Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid
- PMID: 20603216
- PMCID: PMC2945816
- DOI: 10.1016/j.mcn.2010.06.017
Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid
Abstract
The cardinal motor symptoms of Parkinson's disease (PD) are caused by the vulnerability to dysfunction and degeneration of ventral midbrain (VM) dopaminergic (DA) neurons. A major limitation for experimental studies of current ES/iPS cell differentiation protocols is the lack of VM DA neurons with a stable phenotype as defined by an expression marker code of FOXA2/TH/β-tubulin. Here we demonstrate a combination of three modifications that were required to produce VM DA neurons. Firstly, early and specific exposure to 10(-)(8)M (low dose) retinoic acid improved the regional identity of neural progenitor cells derived from human ES cells, PD or healthy subject-specific iPS cells. Secondly, a high activity form of human sonic hedgehog established a sizeable FOXA2(+) neural progenitor cell population in vitro. Thirdly, early exposure to FGF8a, rather than Fgf8b, and WNT1 was required for robust differentiation of the FOXA2(+) floor plate-like human neural progenitor cells into FOXA2(+) DA neurons. FOXA2(+) DA neurons were also generated when this protocol was adapted to feeder-free conditions. In summary, this new human ES and iPS cell differentiation protocol using FGF8a, WNT1, low dose retinoic acid and a high activity form of SHH can generate human VM DA neurons that are required for relevant new bioassays, drug discovery and cell based therapies for PD.
Copyright © 2010 Elsevier Inc. All rights reserved.
Figures
References
-
- Ang SL. Transcriptional control of midbrain dopaminergic neuron development. Development. 2006;133:3499–3506. - PubMed
-
- Cai J, Donaldson A, Yang M, German MS, Enikolopov G, Iacovitti L. The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson's disease model. Stem Cells. 2009;27:220–229. - PubMed
-
- Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996;383:407–413. - PubMed
-
- Chiba S, Lee YM, Zhou W, Freed CR. Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats. Stem Cells. 2008;26:2810–2820. - PubMed
-
- Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A. 2008;105:3392–3397. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
