Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Sep 1;588(Pt 17):3333-9.
doi: 10.1113/jphysiol.2010.191981. Epub 2010 Jul 5.

Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans

Affiliations
Comparative Study

Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans

M Bundgaard-Nielsen et al. J Physiol. .

Abstract

During reductions in central blood volume while heat stressed, a greater decrease in stroke volume (SV) for a similar decrease in ventricular filling pressure, compared to normothermia, suggests that the heart is operating on a steeper portion of a Frank-Starling curve. If so, volume loading of heat-stressed individuals would shift the operating point to a flatter portion of the heat stress Frank-Starling curve thereby attenuating the reduction in SV during subsequent decreases in central blood volume. To investigate this hypothesis, right heart catheterization was performed in eight males from whom pulmonary capillary wedge pressure (PCWP), central venous pressure and SV (via thermodilution) were obtained while central blood volume was reduced via lower-body negative pressure (LBNP) during normothermia, whole-body heating (increase in blood temperature 1 degrees C), and during whole-body heating after intravascular volume expansion. Volume expansion was accomplished by administration of a combination of a synthetic colloid (HES 130/0.4, Voluven) and saline. Before LBNP, SV was not affected by heating (122 +/- 30 ml; mean +/- s.d.) compared to normothermia (110 +/- 20 ml; P = 0.06). However, subsequent volume loading increased SV to 143 +/- 29 ml (P = 0.003). LBNP provoked a larger decrease in SV relative to the decrease in PCWP during heating (8.6 +/- 1.9 ml mmHg(1)) compared to normothermia (4.5 +/- 3.0 ml mmHg(1), P = 0.02). After volume loading while heat stressed, the reduction in the SV to PCWP ratio during LBNP was comparable to that observed during normothermia (4.8 +/- 2.3 ml mmHg(1); P = 0.78). These data support the hypothesis that a Frank-Starling mechanism contributes to compromised blood pressure control during simulated haemorrhage in heat-stressed individuals, and extend those findings by showing that volume infusion corrects this deficit by shifting the operating point to a flatter portion of the heat stress Frank-Starling curve.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Effects of heat-stress on Frank–Starling curves by expressing the relation between CVP (upper panel) and PCWP (lower panel) to SV during normothermia, heat stress, and heat stress plus volume infusion
Data were obtained prior to LBNP and subsequent 15 and 30 mmHg LBNP for each of the indicated conditions. The arrows indicate pre-LBNP responses (i.e. operating point) for each thermal condition. The operating point is the prevailing PCWP, CVP and SV prior to the onset of LBNP. Lines represent fitted approximations.

Comment in

References

    1. Brothers RM, Bhella PS, Shibata S, Wingo JE, Levine BD, Crandall CG. Cardiac systolic and diastolic function during whole body heat stress. Am J Physiol Heart Circ Physiol. 2009;296:H1150–H1156. - PMC - PubMed
    1. Bundgaard-Nielsen M, Sorensen H, Dalsgaard M, Rasmussen P, Secher NH. Relationship between stroke volume, cardiac output and filling of the heart during tilt. Acta Anaesthesiol Scand. 2009;53:1314–1328. - PubMed
    1. Cai Y, Holm S, Jenstrup M, Stromstad M, Eigtved A, Warberg J, Hojgaard L, Friberg L, Secher NH. Electrical admittance for filling of the heart during lower body negative pressure in humans. J Appl Physiol. 2000;89:1569–1576. - PubMed
    1. Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol. 2004;96:1249–1261. - PubMed
    1. Crandall CG, Wilson TE, Marving J, Vogelsang TW, Kjaer A, Hesse B, Secher NH. Effects of passive heating on central blood volume and ventricular dimensions in humans. J Physiol. 2008;586:293–301. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources