Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 21;12(35):10246-54.
doi: 10.1039/c004384m. Epub 2010 Jul 7.

Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin

Affiliations

Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin

Camilo Aponte-Santamaría et al. Phys Chem Chem Phys. .

Abstract

The aquaglyceroporin from Plasmodium falciparum (PfAQP) is a potential drug target for the treatment of malaria. It efficiently conducts water and other small solutes, and is proposed to intervene in several crucial physiological processes during the parasitic life cycle. Despite the wealth of experimental data available, a dynamical and energetic description at the single-molecule level of the solute permeation through PfAQP has been lacking so far. Here we address this question by using equilibrium and umbrella sampling molecular dynamics simulations. We computed the water osmotic permeability coefficient, the pore geometry and the potential of mean force for the permeation of water, glycerol and urea. Our simulations show that the PfAQP, the human aquaporin 1 (hAQP1) and the Escherichia coli glycerol facilitator (GlpF) have nearly identical water permeabilities. The Arg196 residue at the ar/R region was found to play a crucial role regulating the permeation of water, glycerol and urea. The computed free energy barriers at the ar/R selectivity filter corroborate that PfAQP conducts glycerol at higher rates than urea, and suggest that PfAQP is a more efficient glycerol and urea channel than GlpF. Our results are consistent with a solute permeation mechanism for PfAQP which is similar to the one established for other members of the aquaglyceroporin family. In this mechanism, hydrophobic regions near the NPA motifs are the main water rate limiting barriers, and the replacement of water-arg196 interactions and solute-matching in the hydrophobic pocket at the ar/R region are the main determinants underlying selectivity for the permeation of solutes like glycerol and urea.

PubMed Disclaimer

Publication types

LinkOut - more resources