Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 15;26(2):822-7.
doi: 10.1016/j.bios.2010.06.001. Epub 2010 Jun 15.

Significance of the pH-induced conformational changes in the structure of C-reactive protein measured by dual polarization interferometry

Affiliations

Significance of the pH-induced conformational changes in the structure of C-reactive protein measured by dual polarization interferometry

Bor-Ching Sheu et al. Biosens Bioelectron. .

Abstract

Emerging evidence indicates that the conformation of C-reactive protein (CRP) plays important roles in human inflammation and cardiovascular disease (CVD). The different conformations in the structure of CRP under different pH conditions remain an important issue to be investigated for explaining various functions of CRP under certain physiologic and pathologic conditions. We directly measured the pH-induced conformational changes in the structure of CRP by dual polarization interferometry (DPI). The CRP was attached to an aldehyde-functionalized DPI sensor chip at a concentration of 50 μg/ml, and attained 2.019 ng/mm2 to form a surface coverage with a 1.71×10(-14) mol/mm2 CRP monolayer. A pentagonal structure with an average monolayer thickness value of 5.70±0.12nm and a layer density of 0.374±0.058 g/cm2 was obtained at pH 7.0. Moreover, the DPI biosensor signals directly reflected the considerable structural parameters and phenomena of conformational changes of CRP in a pH range of 2.0-10.0. The results obtained showed that the pentameric structure of CRP might dissociated into monomers or monomer aggregates as the pH shifts toward both acidic and alkaline conditions, but only partial rearrangements of CRP subunits might occur at extremely acidic physiological conditions. Considering the proinflammatory effect and subclinical chronic inflammation, pH-induced conformational changes in the structure of CRP between monomeric and pentameric formations may strongly relate to vascular atherosclerosis and subsequent CVD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources