Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct;14(10):e857-67.
doi: 10.1016/j.ijid.2010.02.2263. Epub 2010 Jul 6.

Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells

Affiliations
Free article
Review

Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells

Rajkumar Cheluvappa et al. Int J Infect Dis. 2010 Oct.
Free article

Abstract

The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common opportunistic pathogens, especially after liver transplantation. Pathophysiological alterations of liver sinusoidal endothelial cells (LSECs) have far-reaching repercussions on the liver and on metabolism. LSECs are perforated with fenestrations, pores that facilitate the transfer of lipoproteins and macromolecules between blood and hepatocytes. Gram-negative bacterial endotoxin (lipopolysaccharide, LPS) and the P. aeruginosa toxin, pyocyanin, have marked effects on LSECs. Initial loss of LSEC porosity (defenestration) induced by P. aeruginosa pyocyanin and LPS may confer subsequent immune tolerance to circulating bacterial antigens and toxins. This review collates the known immune responses of the liver to Gram-negative bacterial toxins, with a focus on LSECs. Hyperlipidemia is an important response to Gram-negative bacterial sepsis. The mechanisms proposed for sepsis-associated hyperlipidemia include tissue lipoprotein lipase inhibition and upregulated hepatic triglyceride production. In this review, we propose defenestration of the LSECs by bacterial toxins as an additional mechanism for the hyperlipidemia of sepsis. Given the role of LSECs in hyperlipidemia and liver allograft rejection, LSEC changes induced by P. aeruginosa toxins including LPS and pyocyanin may have significant clinical implications.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources