Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Aug;113(2):313-26.
doi: 10.1097/ALN.0b013e3181dfd401.

Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans

Affiliations
Randomized Controlled Trial

Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans

Kane O Pryor et al. Anesthesiology. 2010 Aug.

Abstract

Background: Intravenous anesthetics have marked effects on memory function, even at subclinical concentrations. Fundamental questions remain in characterizing anesthetic amnesia and identifying affected system-level processes. The authors applied a mathematical model to evaluate time-domain components of anesthetic amnesia in human subjects.

Methods: Sixty-one volunteers were randomized to receive propofol (n = 12), thiopental (n = 13), midazolam (n = 12), dexmedetomidine (n = 12), or placebo (n = 12). With drug present, subjects encoded pictures into memory using a 375-item continuous recognition task, with subsequent recognition later probed with drug absent. Memory function was sampled at up to 163 time points and modeled over the time domain using a two-parameter, first-order negative power function. The parietal event-related P2-N2 complex was derived from electroencephalography, and arousal was repeatedly sampled. Each drug was evaluated at two concentrations.

Results: The negative power function consistently described the course of amnesia (mean R = 0.854), but there were marked differences between drugs in the modulation of individual components (P < 0.0001). Initial memory strength was a function of arousal (P = 0.005), whereas subsequent decay was related to the reaction time (P < 0.0001) and the P2-N2 complex (P = 0.007/0.002 for discrete components).

Conclusions: In humans, the amnesia caused by multiple intravenous anesthetic drugs is characterized by arousal-related effects on initial trace strength, and a subsequent decay predicted by attenuation of the P2-N2 complex at encoding. The authors propose that the failure of normal memory consolidation follows drug-induced disruption of interregional synchrony critical for neuronal plasticity and discuss their findings in the framework of memory systems theory.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4
Figure 5
Figure 5
Figure 6
Figure 6
Figure 7
Figure 7

References

    1. Pryor KO, Veselis RA, Reinsel RA, Feshchenko VA. Enhanced visual memory effect for negative versus positive emotional content is potentiated at sub-anaesthetic concentrations of thiopental. Br J Anaesth. 2004;93:348–55. - PubMed
    1. Veselis RA, Reinsel RA, Feshchenko VA, Wronski M. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology. 1997;87:749–64. - PubMed
    1. Nagashima K, Zorumski CF, Izumi Y. Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices. Anesthesiology. 2005;103:318–26. - PubMed
    1. Evans MS, Viola-McCabe KE. Midazolam inhibits long-term potentiation through modulation of GABAA receptors. Neuropharmacology. 1996;35:347–57. - PubMed
    1. Wei H, Xiong W, Yang S, Zhou Q, Liang C, Zeng BX, Xu L. Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neurosci Lett. 2002;324:181–4. - PubMed

Publication types

MeSH terms

Substances