Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Genome-wide transcription factor localization and function in stem cells

In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008.
.
Affiliations
Free Books & Documents
Review

Genome-wide transcription factor localization and function in stem cells

Wai-Leong Tam et al.
Free Books & Documents

Excerpt

Stem cells are biologically and clinically important cells characterized by their ability to self-renew or differentiate into many cell types. The decision between self-renewal and differentiation is governed by extracellular signals, coupled to intracellular signaling cascades which activate transcription programs. Hence, transcription regulation plays a determining role in conferring cellular identity and function. As intrinsic determinants, transcription factors provide an entry point for uncovering how stem cells attain their phenotype, and how lineage-specific differentiation is initiated. The step-wise maturation of stem cells into terminally differentiated cell types requires the timely activation of a cascade of transcription programs governed by lineage-specifying transcription factors. The identification of key regulators in the hierarchy and their targets can provide clues into the manipulation of stem cells. This review examines the role of key transcription factors in various stem cell types, and emphasizes on their control of downstream gene expression, which ultimately contributes to cellular function.

PubMed Disclaimer

References

    1. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents N.H, Arias C, Lennon C.J, Kluger Y, Dynlacht B.D. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007;27:53–66. doi: 10.1016/j.molcel.2007.06.011. - DOI - PubMed
    1. Adams I.R, McLaren A. Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev Dyn. 2004;229:733–744. doi: 10.1002/dvdy.10471. - DOI - PubMed
    1. Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 2005;6:635–645. doi: 10.1038/nrm1703. - DOI - PubMed
    1. Anneren C, Cowan C.A, Melton D.A. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J Biol Chem. 2004;279:31590–31598. doi: 10.1074/jbc.M403547200. - DOI - PubMed
    1. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008 - PubMed

LinkOut - more resources