Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm
- PMID: 20615995
- PMCID: PMC3063604
- DOI: 10.1073/pnas.1000099107
Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm
Abstract
Vertebrates engage in symbiotic associations with vast and complex microbial communities that colonize their gastrointestinal tracts. Recent advances have provided mechanistic insight into the important contributions of the gut microbiome to vertebrate biology, but questions remain about the evolutionary processes that have shaped symbiotic interactions in the gut and the consequences that arise for both the microbes and the host. Here we discuss the biological principles that underlie microbial symbiosis in the vertebrate gut and the potential of the development of mutualism. We then review phylogenetic and experimental studies on the vertebrate symbiont Lactobacillus reuteri that have provided novel insight into the ecological and evolutionary strategy of a gut microbe and its relationship with the host. We argue that a mechanistic understanding of the microbial symbiosis in the vertebrate gut and its evolution will be important to determine how this relationship can go awry, and it may reveal possibilities by which the gut microbiome can be manipulated to support health.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



References
-
- Cani PD, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–2383. - PubMed
Publication types
MeSH terms
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical