Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 7;55(15):4231-45.
doi: 10.1088/0031-9155/55/15/003. Epub 2010 Jul 8.

Exact algebraization of the signal equation of spoiled gradient echo MRI

Affiliations

Exact algebraization of the signal equation of spoiled gradient echo MRI

Henning Dathe et al. Phys Med Biol. .

Abstract

The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle alpha at a repetition time TR much shorter than the longitudinal relaxation time T(1). We describe two parameter transformations of alpha and TR/T(1), which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small alpha and small TR/T(1) with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in alpha and TR/T(1). This reveals a fundamental relationship between the square of the flip angle and TR/T(1) which characterizes the Ernst angle, constant degree of T(1)-weighting and the influence of the local radio-frequency field.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources