Associations between BMI and the FTO gene are age dependent: results from the GINI and LISA birth cohort studies up to age 6 years
- PMID: 20616607
- PMCID: PMC6452146
- DOI: 10.1159/000314612
Associations between BMI and the FTO gene are age dependent: results from the GINI and LISA birth cohort studies up to age 6 years
Abstract
Objective: The association between polymorphisms in intron 1 of the fat mass and obesity associated gene (FTO) and obesity-related traits is one of the most robust associations reported for complex traits and is established both in adults and children. However, little is known about the longitudinal dynamics of these polymorphisms on body mass index (BMI), overweight, and obesity.
Methods: This study is based on the 2,732 full-term neonates of the German GINI-plus and LISA-plus birth cohorts, for whom genotyping data on the FTO variants rs1558902 (T>A) or rs9935401 (G>A) were available. Children were followed from birth up to age 6 years. Up to 9 anthropometric measurements of BMI were obtained. Fractional-Polynomial-Generalized-Estimation-Equation modeling was used to assess developmental trends and their potential dependence on genotype status.
Results: We observed no evidence for BMI differences between genotypes of both variants for the first 3 years of life. However, from age 3 years onwards, we noted a higher BMI for the homozygous minor alleles carriers in comparison to the other two genotype groups. However, evidence for statistical significance was reached from the age of 4 years onwards.
Conclusions: This is one of the first studies investigating in detail the development of BMI depending on FTO genotype between birth and the age of 6 years in a birth cohort not selected for the phenotype studied. We observed that the association between BMI and FTO genotype evolves gradually and becomes descriptively detectable from the age of 3 years onwards.
Copyright (c) 2010 S. Karger AG, Basel.
Figures


References
-
- Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougneres P, Kovacs P, Marre M, Balkau B, Cauchi S, Chevre JC, Froguel P. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–726. - PubMed
-
- Frayling TMTimpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, The Welcome Trust Case Control Consortium, Hattersley AT, McCarthy MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–894. - PMC - PubMed
-
- Hinney ANguyen TT, Scherag A, Friedel S, Bronner G, Muller TD, Grallert H, Illig T, Wichmann HE, Rief W, Schafer H, Hebebrand J. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE. 2007;2:e1361. - PMC - PubMed
-
- Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical