Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Nov;49(4):567-81.
doi: 10.1007/s00411-010-0311-3. Epub 2010 Jul 9.

Current status of biodosimetry based on standard cytogenetic methods

Affiliations
Review

Current status of biodosimetry based on standard cytogenetic methods

Marcela Maria Pereira de Lemos Pinto et al. Radiat Environ Biophys. 2010 Nov.

Abstract

Knowledge about dose levels in radiation protection is an important step for risk assessment. However, in most cases of real or suspected accidental exposures to ionizing radiation (IR), physical dosimetry cannot be performed for retrospective estimates. In such situations, biological dosimetry has been proposed as an alternative for investigation. Briefly, biodosimetry can be defined as individual dose evaluation based on biological endpoints induced by IR (so-called biomarkers). The relationship between biological endpoints and absorbed dose is not always straightforward: nausea, vomiting and diarrhoea, for example, are the most well-known biological effects of individual irradiation, but a precise correlation between those symptoms and absorbed dose is hardly achieved. The scoring of unstable chromosomal-type aberrations (such as dicentrics and rings) and micronuclei in mitogen-stimulated peripheral blood, up till today, has been the most extensively biodosimetry assay employed for such purposes. Dicentric assay is the gold standard in biodosimetry, since its presence is generally considered to be specific to radiation exposure; scoring of micronuclei (a kind of by-product of chromosomal damages) is easier and faster than that of dicentrics for dose assessment. In this context, the aim of this work is to present an overview on biodosimetry based on standard cytogenetic methods, highlighting its advantages and limitations as tool in monitoring of radiation workers' doses or investigation into accidental exposures. Recent advances and perspectives are also briefly presented.

PubMed Disclaimer

References

    1. Int J Radiat Biol. 2008 Aug;84(8):703-11 - PubMed
    1. Mutat Res. 2006 Aug 30;600(1-2):58-66 - PubMed
    1. Mol Cell Biochem. 2008 Jan;308(1-2):127-31 - PubMed
    1. Radiat Prot Dosimetry. 2005;115(1-4):448-54 - PubMed
    1. Radiat Res. 2008 Feb;169(2):181-7 - PubMed

Publication types

LinkOut - more resources