Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 1;44(15):5934-9.
doi: 10.1021/es100879w.

Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4

Affiliations

Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4

Diana B Loomer et al. Environ Sci Technol. .

Abstract

Batch and column experiments designed to simulate in situ chemical oxidation (ISCO) in a sand aquifer were conducted to create Mn-oxides (MnOx) by oxidation of trichloroethylene (TCE) with permanganate (MnO4-). Electron energy-loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) were used to quantify Mn valence in the oxides. The valence of Mn in the MnOx generated in near-source ISCO conditions was 2.2 and 2.3 when formed at low (<3) and neutral (6-7) pH conditions, respectively. There is no significant difference between these values. Valence was found to be sensitive to the preparation method and to aging. When formed in the presence of excess MnO4-, or aged for 3 months, Mn valence ranged from 2.5 to 3.6. Aging in a lower pH environment inhibited Mn oxidation. The EELS and XPS methods provided similar results, but there was a slight bias to higher values for XPS. This work demonstrates that MnO2(s) may not be the main product of MnO4- reaction with chlorinated solvents as is commonly assumed and that the efficiency of ISCO treatment may be greater than previously known.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources