Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May:436:107-29.
doi: 10.1113/jphysiol.1991.sp018542.

Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat

Affiliations

Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat

K J Buckler et al. J Physiol. 1991 May.

Abstract

1. The dual-emission pH-sensitive fluoroprobe carboxy-SNARF-1 (carboxy-seminaptharhodofluor) was used to measure pHi in type I cells enzymically dispersed from the neonatal rat carotid body. 2. Steady-state pHi in cells bathed in a HEPES-buffered Tyrode solution (pH 7.4) was found to be remarkably alkaline (pHi = 7.77) whereas cells bathed in a CO2-HCO3(-)-buffered Tyrode solution (pH 7.4) had a more 'normal' pHi (pHi = 7.28). These observations were further substantiated by using an independent nullpoint test method to determine pHi. 3. Intracellular intrinsic buffering (beta, determined by acidifying the cell using an NH4Cl pre-pulse) was in the range 7-20 mM per pH unit and appeared to be dependent upon pHi with beta increasing as pHi decreased. 4. In cells bathed in a HEPES-buffered Tyrode solution, pHi recovery from an induced intracellular acid load (10 mM-NH4Cl pre-pulse) was inhibited by the Na(+)-H+ exchange inhibitor ethyl isopropyl amiloride (EIPA; 150 microM) or substitution of Nao+ with N-methyl-D-glucamine (NMG). Both EIPA and Nao+ removal also caused a rapid intracellular acidification, which in the case of Nao+ removal, was readily reversible. The rate of this acidification was similar for both Nao+ removal and EIPA addition. 5. Transferring cells from a HEPES-buffered Tyrode solution to one buffered with 5% CO2-HCO3- resulted in an intracellular acidification which was partially, or wholly, sustained. The rate of acidification upon transfer to CO2-HCO3- was considerably slowed by the membrane permeant carbonic anhydrase inhibitor, acetazolamide, thus indicating the presence of the enzyme in these cells. 6. In CO2-HCO3(-)-buffered Tyrode solution, pHi recovery from an intracellular acidosis (NH4+ pre-pulse) was only partially inhibited by EIPA or amiloride whereas Nao+ removal completely inhibited the recovery. The stilbene DIDS (4,4-diisothiocyanatostilbenedisulphonic acid, 200 microM) also partially inhibited pHi recovery following an induced intracellular acidosis. Furthermore, the pre-treatment with 200 microM-DIDS of a pre-acidified cell in Na(+)-free Tyrode solution completely inhibited pHi recovery when Nao+ was reintroduced together with concomitant addition of 150 microM-EIPA. We conclude, that in the presence of CO2-HCO3-, a Na(+)- and HCO3-dependent (DIDS inhibitable) mechanism aids acid extrusion.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

References

    1. J Physiol. 1975 Nov;252(3):803-15 - PubMed
    1. Pflugers Arch. 1990 Oct;417(2):234-9 - PubMed
    1. Biochemistry. 1979 May 29;18(11):2210-8 - PubMed
    1. J Physiol. 1979 Oct;295:111-37 - PubMed
    1. J Physiol. 1979 Oct;295:83-109 - PubMed

Publication types

MeSH terms

LinkOut - more resources