Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients
- PMID: 20621
- PMCID: PMC431480
- DOI: 10.1073/pnas.74.8.3167
Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients
Abstract
Membrane vesicles prepared from Escherichia coli B/r grown on glutamate as a sole source of carbon and energy require sodium for glutamate accumulation when energized by D-lactate oxidation. Glutamate uptake can also be driven by a prearranged sodium gradient (out to in) in the absence of an energy source or a protonmotive force. Sodium ions are exchanged rapidly in respiring vesicles and the sodium gradient may be large enough under certain conditions to drive glutamate uptake after the protonmotive force is abolished with m-chlorocarbonylcyanide phenylhydrazone. Glutamate uptake due to a prearranged sodium gradient or lactate oxidation is inhibited by monensin but not by nigericin. Transport does not occur in response to valinomycin-induced membrane potential. We interpret these results to indicate that glutamate transport is obligately coupled to sodium transport and can only occur when there is a net flux of sodium ions. This flux is driven by a chemical gradient of sodium that is created by the protonmotive force generated by respiration.
Similar articles
-
Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient.Biochemistry. 1976 Apr 20;15(8):1603-10. doi: 10.1021/bi00653a002. Biochemistry. 1976. PMID: 5106
-
Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles.J Biochem. 1990 Oct;108(4):689-93. doi: 10.1093/oxfordjournals.jbchem.a123264. J Biochem. 1990. PMID: 2149857
-
Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane.Biochemistry. 1983 Apr 12;22(8):1959-65. doi: 10.1021/bi00277a034. Biochemistry. 1983. PMID: 6133551
-
Energy coupling in secondary active transport.Biochim Biophys Acta. 1980 May 27;604(1):91-126. doi: 10.1016/0005-2736(80)90586-6. Biochim Biophys Acta. 1980. PMID: 6248113 Review. No abstract available.
-
The role of sodium ion transport in Escherichia coli energetics.Biochim Biophys Acta. 1991 Feb 8;1056(3):209-24. doi: 10.1016/s0005-2728(05)80052-0. Biochim Biophys Acta. 1991. PMID: 1848102 Review. No abstract available.
Cited by
-
Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions.J Bacteriol. 1984 Oct;160(1):22-7. doi: 10.1128/jb.160.1.22-27.1984. J Bacteriol. 1984. PMID: 6090414 Free PMC article.
-
Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+-stimulated anaerobic transport in cells and membrane vesicles.Appl Environ Microbiol. 1984 May;47(5):1090-5. doi: 10.1128/aem.47.5.1090-1095.1984. Appl Environ Microbiol. 1984. PMID: 6430228 Free PMC article.
-
Light energy conversion in Halobacterium halobium.Microbiol Rev. 1978 Dec;42(4):682-706. doi: 10.1128/mr.42.4.682-706.1978. Microbiol Rev. 1978. PMID: 368557 Free PMC article. Review. No abstract available.
-
Cation coupling to melibiose transport in Salmonella typhimurium.J Bacteriol. 1980 Oct;144(1):192-9. doi: 10.1128/jb.144.1.192-199.1980. J Bacteriol. 1980. PMID: 6998948 Free PMC article.
-
Sodium ion-substrate symport in a marine bacterium.J Bacteriol. 1980 May;142(2):603-7. doi: 10.1128/jb.142.2.603-607.1980. J Bacteriol. 1980. PMID: 7380801 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources