Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:79:59-88.
doi: 10.1016/S1876-1623(10)79002-7.

Protein homorepeats sequences, structures, evolution, and functions

Affiliations
Review

Protein homorepeats sequences, structures, evolution, and functions

Julien Jorda et al. Adv Protein Chem Struct Biol. 2010.

Abstract

The vast majority of protein sequences are aperiodic; they do not have any strong bias in the amino acid composition, and they use a subtle mixture of all or most of the 20 amino acid residues to code a great number of various structures and functions. In this context, homorepeats, runs of a single amino acid residue, represent unusual, eye-catching motifs in proteins. Despite the sequence simplicity and relatively small size, the homorepeat runs have a strong potential for molecular interactions due to the excessively high local concentration of a certain physico-chemical property. Appearance of such runs within proteins may give them new structural and functional features. An increasing number of studies demonstrate the abundance of these motifs in proteins, their important roles in biological processes, and their link to a number of hereditary and age-related diseases. In this chapter, we summarize data on the distribution of homorepeats in proteomes and on their structural properties, evolution, and functions.

PubMed Disclaimer

Publication types

LinkOut - more resources