Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep;77(5):1220-36.
doi: 10.1111/j.1365-2958.2010.07285.x.

A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia

Affiliations
Free article

A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia

Yvonne McCarthy et al. Mol Microbiol. 2010 Sep.
Free article

Abstract

Burkholderia cenocepacia is an opportunistic human pathogen that uses cis-2-dodecenoic acid (BDSF) as a quorum-sensing signal to control expression of virulence factors. BDSF is a signal molecule of the diffusible signal factor (DSF) family that was first described in the plant pathogen Xanthomonas campestris. The mechanism of perception of this signal and the range of functions regulated in B. cenocepacia are, however, unknown. A screen for transposon mutants unable to respond to exogenous signal identified BCAM0227 as a potential BDSF sensor. BCAM0227 is a histidine sensor kinase with an input domain unrelated to that of RpfC, the DSF sensor found in xanthomonads. Transcriptome profiling established the scope of the BDSF regulon and demonstrated that the sensor controls expression of a subset of these genes. A chimeric sensor kinase in which the input domain of BCAM0227 replaced the input domain of RpfC was active in BDSF signal perception when expressed in X. campestris. Mutation of BCAM0227 gave rise to reduced cytotoxicity to Chinese hamster ovary cells and reduced virulence to Wax moth larvae and in the agar-bead mouse model of pulmonary infection. The findings identify BCAM0227 as a novel BDSF sensor and a potential target for interference in virulence-related signalling in B. cenocepacia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources