Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 25;643(2-3):260-6.
doi: 10.1016/j.ejphar.2010.06.066. Epub 2010 Jul 14.

Relative contribution of eNOS and nNOS to endothelium-dependent vasodilation in the mouse aorta

Affiliations
Free article

Relative contribution of eNOS and nNOS to endothelium-dependent vasodilation in the mouse aorta

Luciano S A Capettini et al. Eur J Pharmacol. .
Free article

Abstract

In large vessels, endothelium-dependent vasodilation is mainly attributed to endothelial nitric oxide synthase (eNOS)-derived NO production. However, we have recently shown that neuronal nitric oxide synthase (nNOS)-derived H(2)O(2) is also an endothelium-dependent relaxing factor in the mouse aorta. The relative contribution of nNOS/eNOS, H(2)O(2)/NO remains to be characterized. This work was undertaken to determine the relative contribution of NO versus H(2)O(2), and eNOS versus nNOS to endothelium-dependent vasodilation in the mouse aorta. We used carbon microsensors placed next to the lumen of the vessels to simultaneously measure NO, H(2)O(2) and vascular tone. Acetylcholine produced a concentration-dependent increase in NO and H(2)O(2) production with a good coefficient of linearity with acetylcholine-induced relaxation (R(2)=0.93 and 0.96 for NO and H(2)O(2), respectively). L-NAME, a non-selective inhibitor of nitric oxide synthase, abolished NO and H(2)O(2) production, and impaired vasodilation. Selective pharmacological inhibition of nNOS with L-Arg(NO2)-L-Dbu-NH(2) 2TFA and specific knock-down of nNOS abrogated H(2)O(2) and decreased by half acetylcholine-induced vasodilation. Catalase, which specifically decomposes H(2)O(2), did not interfere with NO, but impaired H(2)O(2) and decreased vasodilation to the same level as those obtained with nNOS inhibition or knocking down. Specific knocking down of eNOS had no effect on H(2)O(2) production but greatly reduced NO and decreased vasodilation to levels similar to those found with nNOS inhibition. In eNOS knocked-down mice, pharmacological nNOS inhibition dramatically reduced H(2)O(2) production and further reduced the residual acetylcholine-induced vasodilation. It is concluded that nNOS/eNOS and H(2)O(2)/NO both contribute in a significant way to relaxation in the mouse aorta.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources