Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010:475:427-53.
doi: 10.1016/S0076-6879(10)75017-5.

Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions

Affiliations

Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions

Peter Gross et al. Methods Enzymol. 2010.

Abstract

The technically challenging field of single-molecule biophysics has established itself in the last decade by granting access to detailed information about the fate of individual biomolecules, unattainable in traditional biochemical assays. The appeal of single-molecule methods lies in the directness of the information obtained from individual biomolecules. Technological improvements in single-molecule methods have made it possible to combine optical tweezers, fluorescence microscopy, and microfluidic flow systems. Such a combination of techniques has opened new possibilities to study complex biochemical reactions on the single-molecule level. In this chapter, we provide general considerations for the development of a combined optical trapping, fluorescence microscopy, and microfluidics instrument, along with methods to solve technical issues that are critical for designing successful experiments. Finally, we present several experiments to illustrate the power of this combination of techniques.

PubMed Disclaimer

Publication types

LinkOut - more resources