Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;17(27):3109-19.
doi: 10.2174/092986710791959783.

Homocysteine, intracellular signaling and thrombotic disorders

Affiliations
Review

Homocysteine, intracellular signaling and thrombotic disorders

N Dionisio et al. Curr Med Chem. 2010.

Abstract

Homocysteine, a sulphur-containing amino acid derived from methionine, has been presented as an independent risk factor for cardiovascular disorders, including atherosclerosis and thrombogenesis. The mechanisms underlying homocysteine-induced effects have been intensively investigated over the last two decades. Homocysteine can induce oxidative stress promoting oxidant injury to vascular and blood cells. Hyperhomocysteinemia often results in intracellular Ca2+ mobilization, endoplasmic reticulum (ER) stress, with the subsequent development of apoptotic events, chronic inflammation leading to endothelial dysfunction and remodeling of the extracellular matrix. Homocysteine has also been reported to induce modulation of gene expression through alteration of the methylation status. The effects of elevated concentrations of circulating homocysteine on the vascular wall, platelet function and coagulation factors promote the development of a pro-coagulant state. The pathophysiological significance of homocysteine in the development of vascular disorders through the induction of endothelial dysfunction and abnormal platelet activity and blood coagulation is discussed in this review.

PubMed Disclaimer

Publication types