Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jul:1200:128-39.
doi: 10.1111/j.1749-6632.2010.05512.x.

Pituitary adenylate cyclase activating polypeptide in the retina: focus on the retinoprotective effects

Affiliations
Review

Pituitary adenylate cyclase activating polypeptide in the retina: focus on the retinoprotective effects

T Atlasz et al. Ann N Y Acad Sci. 2010 Jul.

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects against different neuronal injuries, such as traumatic brain and spinal cord injury, models of neurodegenerative diseases, and cerebral ischemia. PACAP and its receptors are present in the retina. In this study, we summarize the current knowledge on retinal PACAP with focus on the retinoprotective effects. Results of histological, immunohistochemical, and molecular biological analysis are reviewed. In vitro, PACAP shows protection against glutamate, thapsigargin, anisomycin, and anoxia. In vivo, the protective effects of intravitreal PACAP treatment have been shown in the following models of retinal degeneration in rats: excitotoxic injury induced by glutamate and kainate, ischemic injury, degeneration caused by UV-A light, optic nerve transection, and streptozotocin-induced diabetic retinopathy. Studying the molecular mechanism has revealed that PACAP acts by activating antiapoptotic and inhibiting proapoptotic signaling pathways in the retina in vivo. These studies strongly suggest that PACAP is an excellent candidate retinoprotective agent that could be a potential therapeutic substance in various retinal diseases.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources