Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;1(2):133-40.
doi: 10.1007/s12539-009-0024-3. Epub 2009 May 28.

Radicals as hydrogen bond donors and acceptors

Affiliations

Radicals as hydrogen bond donors and acceptors

Erin R Johnson et al. Interdiscip Sci. 2009 Jun.

Abstract

High-level quantum chemical techniques were used to study the hydrogen bonding interactions in dimers of simple hydrogen bond donors and acceptors. The dimers studied were formed from combinations of CH(4), NH(3), OH(2) with each other and with the *CH(3), *NH(2), and *OH radicals. It was found that complexes in which a radical serves as a hydrogen bond donor, i.e. *AH(x)-BH(y), are more strongly bound than dimers in which the hydrogen bond donor is the analogous parent molecule, i.e. AH(x+1)-BH(y). Complexes in which a radical serves as a hydrogen bond acceptor, i.e. BH(y) (-) *AH(x), are more weakly bound than dimers in which the hydrogen bond acceptor is the analogous parent molecule, i.e. BH(y)-AH(x+1). The differences in these binding properties are attributable to the facts that, in radicals, the A-H bonds are more polar and the A atoms have less negative partial charges than in molecules. Detailed analyses of spin densities revealed that spin delocalization from a radical to a molecule is negligible. Therefore, spin delocalization plays no role in the binding within the complexes studied in this work. Density functional theory methods were also used to calculate the binding energies of the complexes. It was found that the PBE0 and B971 functionals predict binding energies that are in good agreement with the high-level wavefunction data, whereas the performance of the common B3LYP method is not as good. Correcting the functionals for their ability to treat dispersion interactions in carbon-containing compounds improves the binding energies computed with the B3LYP and PBE0 functionals but results in over-binding with B971.

PubMed Disclaimer

LinkOut - more resources