Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991:624:45-59.
doi: 10.1111/j.1749-6632.1991.tb17005.x.

Putative role of neutrophil elastase in the pathogenesis of emphysema

Affiliations
Review

Putative role of neutrophil elastase in the pathogenesis of emphysema

G L Snider et al. Ann N Y Acad Sci. 1991.

Abstract

Emphysema in humans takes several different forms: centrilobular, panacinar, paraseptal, and airspace enlargement with fibrosis. The varying morphologic and background features of these forms of emphysema suggest that they differ in pathogenesis. Elastic fiber rupture and fraying are a feature of emphysema. Experimental emphysema may be induced by human neutrophil elastase and other elastolytic enzymes but not by nonelastolytic proteases. Disruption of elastic fibers also appears to be the underlying feature of lathyrogen-induced airspace enlargement and of the emphysema in the blotchy mouse. However, there is no evidence of elastic fiber destruction in cadmium-induced airspace enlargement with fibrosis or in emphysema associated with hyperoxia or severe starvation. Thus, elastic fiber disruption is not common to all forms of experimental emphysema. We posit that airspace enlargement may be a stereotyped response of the lungs to different injuries. Emphysema can be induced in experimental animals by repeated induction of pulmonary neutrophilia. However, the evidence for involvement of neutrophil elastase in human emphysema is not clear: there are studies using a variety of approaches that weigh on both sides of the question. There is also in vitro evidence that alveolar macrophages can degrade elastin or elastic fibers with which they are in contact by means of a metalloelastase or the cooperative action of plasminogen activator and an acid cysteine protease. We conclude that the pathogenesis of emphysema is complex. Neutrophil elastase likely plays a major role in the development of some forms of emphysema, but our understanding of the interactions between the alveolar walls and neutrophils is still fragmentary.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources