Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR)
- PMID: 20642916
- DOI: 10.3310/hta14350
Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR)
Abstract
Objectives: To determine the comparative effectiveness and cost-effectiveness of conventional ventilatory support versus extracorporeal membrane oxygenation (ECMO) for severe adult respiratory failure.
Design: A multicentre, randomised controlled trial with two arms.
Setting: The ECMO centre at Glenfield Hospital, Leicester, and approved conventional treatment centres and referring hospitals throughout the UK.
Participants: Patients aged 18-65 years with severe, but potentially reversible, respiratory failure, defined as a Murray lung injury score > or = 3.0, or uncompensated hypercapnoea with a pH < 7.20 despite optimal conventional treatment.
Interventions: Participants were randomised to conventional management (CM) or to consideration of ECMO.
Main outcome measures: The primary outcome measure was death or severe disability at 6 months. Secondary outcomes included a range of hospital indices: duration of ventilation, use of high frequency/oscillation/jet ventilation, use of nitric oxide, prone positioning, use of steroids, length of intensive care unit stay, and length of hospital stay - and (for ECMO patients only) mode (venovenous/veno-arterial), duration of ECMO, blood flow and sweep flow.
Results: A total of 180 patients (90 in each arm) were randomised from 68 centres. Three patients in the conventional arm did not give permission to be followed up. Of the 90 patients randomised to the ECMO arm, 68 received that treatment. ECMO was not given to three patients who died prior to transfer, two who died in transit, 16 who improved with conventional treatment given by the ECMO team and one who required amputation and could not therefore be heparinised. Ninety patients entered the CM (control) arm, three patients later withdrew and refused follow-up (meaning that they were alive), leaving 87 patients for whom primary outcome measures were available. CM consisted of any treatment deemed appropriate by the patient's intensivist with the exception of extracorporeal gas exchange. No CM patients received ECMO, although one received a form of experimental extracorporeal arteriovenous carbon dioxide removal support (a clear protocol violation). Fewer patients in the ECMO arm than in the CM arm had died or were severely disabled 6 months after randomisation, [33/90 (36.7%) versus 46/87 (52.9%) respectively]. This equated to one extra survivor for every six patients treated. Only one patient (in the CM arm) was known to be severely disabled at 6 months. Patients allocated to ECMO incurred average total costs of 73,979 pounds compared with 33,435 pounds for those undergoing CM (UK prices, 2005). A lifetime model predicted the cost per quality-adjusted life-year (QALY) of ECMO to be 19,252 pounds (95% confidence interval 7622 pounds to 59,200 pounds) at a discount rate of 3.5%. Lifetime QALYs gained were 10.75 for the ECMO group compared with 7.31 for the conventional group. Costs to patients and their relatives, including out of pocket and time costs, were higher for patients allocated to ECMO.
Conclusions: Compared with CM, transferring adult patients with severe but potentially reversible respiratory failure to a single centre specialising in the treatment of severe respiratory failure for consideration of ECMO significantly increased survival without severe disability. Use of ECMO in this way is likely to be cost-effective when compared with other technologies currently competing for health resources.
Trial registration: Current Controlled Trials ISRCTN47279827.
Similar articles
-
Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial.Lancet. 2009 Oct 17;374(9698):1351-63. doi: 10.1016/S0140-6736(09)61069-2. Epub 2009 Sep 15. Lancet. 2009. PMID: 19762075 Clinical Trial.
-
Methods of data collection and analysis for the economic evaluation alongside a national, multi-centre trial in the UK: conventional ventilation or ECMO for Severe Adult Respiratory Failure (CESAR).BMC Health Serv Res. 2008 Apr 30;8:94. doi: 10.1186/1472-6963-8-94. BMC Health Serv Res. 2008. PMID: 18447931 Free PMC article. Clinical Trial.
-
CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure.BMC Health Serv Res. 2006 Dec 23;6:163. doi: 10.1186/1472-6963-6-163. BMC Health Serv Res. 2006. PMID: 17187683 Free PMC article. Clinical Trial.
-
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
-
To ventilate, oscillate, or cannulate?J Crit Care. 2013 Oct;28(5):655-62. doi: 10.1016/j.jcrc.2013.04.009. Epub 2013 Jul 2. J Crit Care. 2013. PMID: 23827735 Review.
Cited by
-
A Novel Model of Venovenous Extracorporeal Membrane Oxygenation in Rats with Femoral Cannulation and Insights into Hemodynamic Changes.Biomedicines. 2024 Aug 10;12(8):1819. doi: 10.3390/biomedicines12081819. Biomedicines. 2024. PMID: 39200283 Free PMC article.
-
[Interhospital transport of patients with ARDS].Anaesthesist. 2017 Aug;66(8):604-613. doi: 10.1007/s00101-017-0296-2. Anaesthesist. 2017. PMID: 28353068 Review. German.
-
Extrapolating Survival from Randomized Trials Using External Data: A Review of Methods.Med Decis Making. 2017 May;37(4):377-390. doi: 10.1177/0272989X16639900. Epub 2016 Jul 10. Med Decis Making. 2017. PMID: 27005519 Free PMC article. Review.
-
Oxygenated shunting from right to left: a feasibility study of minimized atrio-atrial extracorporeal membrane oxygenation for mid-term lung assistance in an acute ovine model.Interact Cardiovasc Thorac Surg. 2013 Jul;17(1):44-8. doi: 10.1093/icvts/ivt074. Epub 2013 Mar 29. Interact Cardiovasc Thorac Surg. 2013. PMID: 23543405 Free PMC article.
-
ECMO for severe ARDS: systematic review and individual patient data meta-analysis.Intensive Care Med. 2020 Nov;46(11):2048-2057. doi: 10.1007/s00134-020-06248-3. Epub 2020 Oct 6. Intensive Care Med. 2020. PMID: 33021684 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical