Refined method for the genomic integration of complex synthetic circuits
- PMID: 20646959
- DOI: 10.1016/j.jbiosc.2010.05.014
Refined method for the genomic integration of complex synthetic circuits
Abstract
Genetic reconstruction of regulatory gene circuits is currently applied in systematic dynamics and structure-function studies of intact cellular networks in systems biology. We present a modified procedure for the integration of complex genetic circuits into the Escherichia coli genome, to provide an efficient synthetic approach for stochastic study and the artificial engineering of genetic networks. Linear artificial sequences of various lengths were easily integrated into the bacterial genome at one time. Comparison of the cellular concentrations of proteins encoded by genes carried on plasmids or the genome indicated that genome recombination could minimize the copy number noise in the genetic circuit, allowing precise design and interpretation of the cellular network. The refined recombination procedure allowed efficient construction of a single copy of a complex genetic circuit in cells, and the resultant reduced fluctuation in copy number led to accurate phenotypic behaviour of the genome-integrated synthetic switch corresponding to the design principle. The availability of long-fragment insertions makes the reconstruction of complex networks easy on the genome, and provides a powerful tool for precise engineering in synthetic and systems biology.
Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Similar articles
-
Creating Single-Copy Genetic Circuits.Mol Cell. 2016 Jul 21;63(2):329-336. doi: 10.1016/j.molcel.2016.06.006. Epub 2016 Jul 14. Mol Cell. 2016. PMID: 27425413 Free PMC article.
-
Construction of synthetic gene circuits in the Escherichia coli genome.Methods Mol Biol. 2013;1073:157-68. doi: 10.1007/978-1-62703-625-2_13. Methods Mol Biol. 2013. PMID: 23996446
-
Scarless engineering of the Escherichia coli genome.Methods Mol Biol. 2008;416:251-9. doi: 10.1007/978-1-59745-321-9_16. Methods Mol Biol. 2008. PMID: 18392972
-
Engineered gene circuits.Nature. 2002 Nov 14;420(6912):224-30. doi: 10.1038/nature01257. Nature. 2002. PMID: 12432407 Review.
-
Synthetic gene networks in mammalian cells.Curr Opin Biotechnol. 2010 Oct;21(5):690-6. doi: 10.1016/j.copbio.2010.07.006. Epub 2010 Aug 4. Curr Opin Biotechnol. 2010. PMID: 20691580 Review.
Cited by
-
Growth rate-coordinated transcriptome reorganization in bacteria.BMC Genomics. 2013 Nov 20;14:808. doi: 10.1186/1471-2164-14-808. BMC Genomics. 2013. PMID: 24252326 Free PMC article.
-
Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages.PLoS One. 2015 Aug 20;10(8):e0135639. doi: 10.1371/journal.pone.0135639. eCollection 2015. PLoS One. 2015. PMID: 26292224 Free PMC article.
-
Creating Single-Copy Genetic Circuits.Mol Cell. 2016 Jul 21;63(2):329-336. doi: 10.1016/j.molcel.2016.06.006. Epub 2016 Jul 14. Mol Cell. 2016. PMID: 27425413 Free PMC article.
-
Directed evolution of cell size in Escherichia coli.BMC Evol Biol. 2014 Dec 17;14:257. doi: 10.1186/s12862-014-0257-1. BMC Evol Biol. 2014. PMID: 25514845 Free PMC article.
-
Stochastic switching induced adaptation in a starved Escherichia coli population.PLoS One. 2011;6(9):e23953. doi: 10.1371/journal.pone.0023953. Epub 2011 Sep 13. PLoS One. 2011. PMID: 21931628 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources