Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;2(5):739-46.
doi: 10.1039/b9nr00329k. Epub 2010 Feb 25.

Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy

Affiliations

Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy

Takahito Nakamura et al. Nanoscale. 2010 May.

Abstract

A biocompatible photothermal nanomedicine based on a PEGylated nanogel containing gold nanoparticles (GNPs) in a cross-linked network core of stimuli-responsive poly[2-(N,N-diethylamino)ethyl methacrylate] (PEAMA) gel for cancer photothermal therapy (PTT) was prepared through the reduction of Au(iii) ions without any reducing agents. The influence of the reduction conditions, such as pH, temperature, and N/Au ratio (molar ratio of the amino groups in the PEGylated nanogel to the Au(iii) ions), on the formation of the GNPs in the stimuli-responsive PEAMA gel core (reducing environment) was also studied. Note that the PEGylated nanogel containing GNPs prepared at pH 6, 60 degrees C and N/Au = 1 (PEGylated GNG (1)) was found to have the highest GNP-loading capacity with a diameter of about 8 nm, as observed by TEM; viz., about 27 GNPs formed in a single PEAMA gel core. PEGylated GNG (1) showed a remarkable photothermal efficacy (DeltaT = 7.7 degrees C) under irradiation with Ar ion (Ar(+)) laser (514.5 nm) at a fluence of 39 W cm(-2) for 6 min (14 kJ cm(-2)). Note that PEGylated GNG (1) showed non-cytotoxicity in the absence of irradiation with Ar(+) laser (480 microg mL(-1): > 90% cell viability), whereas pronounced cytotoxicity (IC(50) = 110 microg mL(-1)) was observed for PEGylated GNG (1) under irradiation with Ar(+) laser at a fluence of 26 W cm(-2) for 5 min (7.8 kJ cm(-2)), because of the heat-generation from the GNPs in the cells, which resulted in selective and noninvasive cancer PTT. Thus, PEGylated GNG (1), which has a high GNP-loading capacity, would be a promising nanomedicine for cancer PTT.

PubMed Disclaimer

Similar articles

Cited by

Publication types