Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
- PMID: 20651683
- PMCID: PMC2987584
- DOI: 10.1038/nature09291
Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
Abstract
Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARgamma (peroxisome proliferator-activated receptor gamma), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARgamma does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARgamma by Cdk5 is blocked by anti-diabetic PPARgamma ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARgamma phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARgamma may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARgamma.
Conflict of interest statement
Figures





Comment in
-
Obesity: New life for antidiabetic drugs.Nature. 2010 Jul 22;466(7305):443-4. doi: 10.1038/466443a. Nature. 2010. PMID: 20651677 Free PMC article.
Similar articles
-
Controlling a master switch of adipocyte development and insulin sensitivity: covalent modifications of PPARγ.Biochim Biophys Acta. 2012 Jul;1822(7):1090-5. doi: 10.1016/j.bbadis.2012.03.014. Epub 2012 Apr 4. Biochim Biophys Acta. 2012. PMID: 22504298 Free PMC article. Review.
-
Obesity: New life for antidiabetic drugs.Nature. 2010 Jul 22;466(7305):443-4. doi: 10.1038/466443a. Nature. 2010. PMID: 20651677 Free PMC article.
-
Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation.Nature. 2011 Sep 4;477(7365):477-81. doi: 10.1038/nature10383. Nature. 2011. PMID: 21892191 Free PMC article.
-
GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain.J Biol Chem. 2012 Aug 10;287(33):28169-79. doi: 10.1074/jbc.M111.332106. Epub 2012 May 14. J Biol Chem. 2012. PMID: 22584573 Free PMC article.
-
Diabetes: New conductors for the peroxisome proliferator-activated receptor γ (PPARγ) orchestra.Int J Biochem Cell Biol. 2011 Aug;43(8):1071-4. doi: 10.1016/j.biocel.2011.04.017. Epub 2011 May 5. Int J Biochem Cell Biol. 2011. PMID: 21558015 Review.
Cited by
-
Targeting adipose tissue.Diabetol Metab Syndr. 2012 Oct 27;4(1):43. doi: 10.1186/1758-5996-4-43. Diabetol Metab Syndr. 2012. PMID: 23102228 Free PMC article.
-
A Selective PPARγ Modulator Reduces Hepatic Fibrosis.Biology (Basel). 2020 Jul 2;9(7):151. doi: 10.3390/biology9070151. Biology (Basel). 2020. PMID: 32630819 Free PMC article.
-
Controlling a master switch of adipocyte development and insulin sensitivity: covalent modifications of PPARγ.Biochim Biophys Acta. 2012 Jul;1822(7):1090-5. doi: 10.1016/j.bbadis.2012.03.014. Epub 2012 Apr 4. Biochim Biophys Acta. 2012. PMID: 22504298 Free PMC article. Review.
-
A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4.Toxicol Appl Pharmacol. 2012 Sep 1;263(2):225-32. doi: 10.1016/j.taap.2012.06.014. Epub 2012 Jun 30. Toxicol Appl Pharmacol. 2012. PMID: 22750490 Free PMC article.
-
PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine.Curr Diab Rep. 2021 Apr 18;21(6):18. doi: 10.1007/s11892-021-01385-5. Curr Diab Rep. 2021. PMID: 33866450 Review.
References
-
- Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004;89:2548–2556. - PubMed
-
- Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. - PubMed
-
- Lagathu C, Yvan-Charvet L, Bastard JP, et al. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia. 2006;49:2162–2173. - PubMed
-
- Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–312. - PubMed
-
- Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 2001;7:947–953. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
- U54 MH084512/MH/NIMH NIH HHS/United States
- K99 DK087853/DK/NIDDK NIH HHS/United States
- DK31405/DK/NIDDK NIH HHS/United States
- ImNIH/Intramural NIH HHS/United States
- R37 DK031405/DK/NIDDK NIH HHS/United States
- R01 DK031405/DK/NIDDK NIH HHS/United States
- R01 GM084041/GM/NIGMS NIH HHS/United States
- U54-MH084512/MH/NIMH NIH HHS/United States
- DK087853/DK/NIDDK NIH HHS/United States
- R00 DK087853/DK/NIDDK NIH HHS/United States
- S10 RR027270/RR/NCRR NIH HHS/United States
- R01-GM084041/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases