Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 22;466(7305):470-3.
doi: 10.1038/nature09211.

Atomically precise bottom-up fabrication of graphene nanoribbons

Affiliations

Atomically precise bottom-up fabrication of graphene nanoribbons

Jinming Cai et al. Nature. .

Abstract

Graphene nanoribbons-narrow and straight-edged stripes of graphene, or single-layer graphite-are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices. In particular, although the two-dimensional parent material graphene exhibits semimetallic behaviour, quantum confinement and edge effects should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical, sonochemical and lithographic methods as well as through the unzipping of carbon nanotubes, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots, superlattice structures and magnetic devices based on specific graphene nanoribbon edge states.

PubMed Disclaimer

References

    1. Angew Chem Int Ed Engl. 2007;46(11):1814-8 - PubMed
    1. Nature. 2009 Apr 16;458(7240):872-6 - PubMed
    1. Angew Chem Int Ed Engl. 2005 Sep 26;44(38):6142-5 - PubMed
    1. J Phys Condens Matter. 2009 Aug 26;21(34):344203 - PubMed
    1. Nano Lett. 2008 Sep;8(9):2773-8 - PubMed

Publication types

LinkOut - more resources