Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun:114 ( Pt 3):1281-95.
doi: 10.1093/brain/114.3.1281.

Sympathetic muscle nerve activity during sleep in man

Affiliations

Sympathetic muscle nerve activity during sleep in man

M Hornyak et al. Brain. 1991 Jun.

Abstract

Muscle sympathetic activity (MSA) was recorded in the peroneal nerve during sleep in 14 sleep-deprived healthy subjects. Continuous noninvasive recordings of finger blood pressure were obtained in 7 subjects. In light sleep (stage 2 sleep) the number of sympathetic bursts/min decreased to 90 +/- 8% (mean +/- SEM) and total MSA (= burst/min x mean burst area) to 89 +/- 5% of the awake value (P less than 0.05, n = 14). In deep sleep (stage 3-4) total MSA decreased further, to 71 +/- 8% of the awake value (n = 5). There was no close correlation between variations of depth of sleep and variations of sympathetic activity but during continuously deepening sleep MSA decreased progressively with time. In stage 2 sleep, high amplitude K complexes were accompanied by short-lasting increases of sympathetic activity. Since these increases of MSA were not preceded by decreases of diastolic blood pressure, which is known to evoke increased sympathetic nerve traffic in muscle nerves, we suggest that K complex related increases of MSA are signs of arousal which elicit both cortical EEG phenomena and activation of cerebral sympathetic centres. During desynchronized (REM) sleep, total MSA increased to 124 +/- 12% of the value in awake state (n = 5). The increases occurred mainly in short irregular periods, often related to rapid eye movements and there was an inverse relationship between the duration of the desynchronized sleep and the increase of total MSA. Our findings are similar to the data obtained in animal experiments and may partly explain changes of blood pressure during synchronized and desynchronized sleep reported previously in man.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources