Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 25:7:171.
doi: 10.1186/1743-422X-7-171.

High prevalence of porcine Hokovirus in German wild boar populations

Affiliations

High prevalence of porcine Hokovirus in German wild boar populations

Cornelia Adlhoch et al. Virol J. .

Abstract

Porcine Hokovirus (PHoV) was recently discovered in Hong Kong. This new Parvovirus of pigs is closely related to the human Parvoviruses 4 and 5 (PARV4/5) and bovine Hokovirus (BHoV). So far, nothing is known about the presence and prevalence of PHoV in regions of the world other than Hong Kong. A study was initiated to investigate PHoV in German wild boars from five different geographical regions, using a newly established quantitative real-time PCR assay. Analysis of collected liver and serum samples revealed high overall prevalence (32.7%; 51/156) of PHoV in wild boars. The prevalence differed between the regions and increased with age. Two near full-length genomes and a large fragment for three additional isolates from different regions were sequenced and used for phylogenetic analysis. The German PHoV sequences from wild boars showed a close relationship with sequences of isolates from Hong Kong.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic analysis. A phylogenetic tree of new porcine, bovine and human parvoviruses was constructed using the neighbor joining method. Bootstrap values for the major branch points are given in percent. The trees were statistically evaluated in a bootstrap analysis with 1,000 replicates. The new German PHoV sequences are indicated with a dot.

References

    1. Lau SK, Woo PC, Tse H, Fu CT, Au WK, Chen XC, Tsoi HW, Tsang TH, Chan JS, Tsang DN. Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J Gen Virol. 2008;89:1840–1848. doi: 10.1099/vir.0.2008/000380-0. - DOI - PubMed
    1. Fryer JF, Kapoor A, Minor PD, Delwart E, Baylis SA. Novel parvovirus and related variant in human plasma. Emerg Infect Dis. 2006;12:151–154. - PMC - PubMed
    1. Fryer JF, Delwart E, Hecht FM, Bernardin F, Jones MS, Shah N, Baylis SA. Frequent detection of the parvoviruses, PARV4 and PARV5, in plasma from blood donors and symptomatic individuals. Transfusion (Paris) 2007;47:1054–1061. - PubMed
    1. Jones MS, Kapoor A, Lukashov VV, Simmonds P, Hecht F, Delwart E. New DNA viruses identified in patients with acute viral infection syndrome. J Virol. 2005;79:8230–8236. doi: 10.1128/JVI.79.13.8230-8236.2005. - DOI - PMC - PubMed
    1. Tuke PW, Parry RP, Appleton H. Parvovirus PARV4 visualisation and detection. J Gen Virol. 2010;91(Pt2):541–544. doi: 10.1099/vir.0.014852-0. - DOI - PubMed

LinkOut - more resources