Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment
- PMID: 20653984
- PMCID: PMC3017823
- DOI: 10.1186/1471-2229-10-153
Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment
Abstract
Background: Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of saline-alkaline stress transcriptome is mostly focused on saline (NaCl) stress and only limited information on alkaline (NaHCO3) stress is available.
Results: Using Affymetrix Soybean GeneChip, we conducted transcriptional profiling on Glycine soja roots subjected to 50 mmol/L NaHCO3 treatment. In a total of 7088 probe sets, 3307 were up-regulated and 5720 were down-regulated at various time points. The number of significantly stress regulated genes increased dramatically after 3 h stress treatment and peaked at 6 h. GO enrichment test revealed that most of the differentially expressed genes were involved in signal transduction, energy, transcription, secondary metabolism, transporter, disease and defence response. We also detected 11 microRNAs regulated by NaHCO3 stress.
Conclusions: This is the first comprehensive wild soybean root transcriptome analysis under alkaline stress. These analyses have identified an inventory of genes with altered expression regulated by alkaline stress. The data extend the current understanding of wild soybean alkali stress response by providing a set of robustly selected, differentially expressed genes for further investigation.
Figures









Similar articles
-
Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.Funct Integr Genomics. 2015 Nov;15(6):651-60. doi: 10.1007/s10142-015-0439-y. Epub 2015 Apr 15. Funct Integr Genomics. 2015. PMID: 25874911
-
Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization.PLoS One. 2014 May 16;9(5):e97106. doi: 10.1371/journal.pone.0097106. eCollection 2014. PLoS One. 2014. PMID: 24835559 Free PMC article.
-
Elucidating the role of exogenous melatonin in mitigating alkaline stress in soybeans across different growth stages: a transcriptomic and metabolomic approach.BMC Plant Biol. 2024 May 8;24(1):380. doi: 10.1186/s12870-024-05101-9. BMC Plant Biol. 2024. PMID: 38720246 Free PMC article.
-
Cotton transcriptome analysis reveals novel biological pathways that eliminate reactive oxygen species (ROS) under sodium bicarbonate (NaHCO3) alkaline stress.Genomics. 2021 May;113(3):1157-1169. doi: 10.1016/j.ygeno.2021.02.022. Epub 2021 Mar 6. Genomics. 2021. PMID: 33689783
-
Emerging approaches to broaden resistance of soybean to soybean cyst nematode as supported by gene expression studies.Plant Physiol. 2009 Nov;151(3):1017-22. doi: 10.1104/pp.109.144006. Epub 2009 Aug 12. Plant Physiol. 2009. PMID: 19675146 Free PMC article. Review. No abstract available.
Cited by
-
Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress.Sci Rep. 2023 Dec 12;13(1):22074. doi: 10.1038/s41598-023-49641-w. Sci Rep. 2023. PMID: 38086906 Free PMC article.
-
GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress.Planta. 2012 Jun;235(6):1141-55. doi: 10.1007/s00425-011-1563-0. Epub 2011 Dec 9. Planta. 2012. PMID: 22160567
-
GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity.Plant Mol Biol. 2015 Jan;87(1-2):111-24. doi: 10.1007/s11103-014-0264-z. Epub 2014 Dec 5. Plant Mol Biol. 2015. PMID: 25477077
-
The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity.Plant Mol Biol. 2017 Oct;95(3):253-268. doi: 10.1007/s11103-017-0643-3. Epub 2017 Sep 7. Plant Mol Biol. 2017. PMID: 28884328
-
Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage.PLoS One. 2015 Feb 13;10(2):e0116217. doi: 10.1371/journal.pone.0116217. eCollection 2015. PLoS One. 2015. PMID: 25679513 Free PMC article.
References
-
- Ge Y, Zhu YM, Lv DK, Dong TT, Wang WS, Tan SJ, Liu CH, Zou P. Research on responses of wild soybean to alkaline stress. Pratacultural Science. 2009;26(2):47–52.
-
- Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal. 2007;50(2):347–363. doi: 10.1111/j.1365-313X.2007.03052.x. - DOI - PubMed
-
- Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal. 2002;31(3):279–292. doi: 10.1046/j.1365-313X.2002.01359.x. - DOI - PubMed
-
- Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Molecular Biology. 2004;56:29–55. doi: 10.1007/s11103-004-2200-0. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases