Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;12(1):122-42.
doi: 10.1093/biostatistics/kxq046. Epub 2010 Jul 22.

Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis

Affiliations

Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis

Gerta Rücker et al. Biostatistics. 2011 Jan.

Abstract

Statistical heterogeneity and small-study effects are 2 major issues affecting the validity of meta-analysis. In this article, we introduce the concept of a limit meta-analysis, which leads to shrunken, empirical Bayes estimates of study effects after allowing for small-study effects. This in turn leads to 3 model-based adjusted pooled treatment-effect estimators and associated confidence intervals. We show how visualizing our estimators using the radial plot indicates how they can be calculated using existing software. The concept of limit meta-analysis also gives rise to a new measure of heterogeneity, termed G(2), for heterogeneity that remains after small-study effects are accounted for. In a simulation study with binary data and small-study effects, we compared our proposed estimators with those currently used together with a recent proposal by Moreno and others. Our criteria were bias, mean squared error (MSE), variance, and coverage of 95% confidence intervals. Only the estimators arising from the limit meta-analysis produced approximately unbiased treatment-effect estimates in the presence of small-study effects, while the MSE was acceptably small, provided that the number of studies in the meta-analysis was not less than 10. These limit meta-analysis estimators were also relatively robust against heterogeneity and one of them had a relatively small coverage error.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources