An integrative approach to genomic introgression mapping
- PMID: 20656899
- PMCID: PMC2938162
- DOI: 10.1104/pp.110.158949
An integrative approach to genomic introgression mapping
Abstract
Near-isogenic lines (NILs) are valuable genetic resources for many crop species, including soybean (Glycine max). The development of new molecular platforms promises to accelerate the mapping of genetic introgressions in these materials. Here, we compare some existing and emerging methodologies for genetic introgression mapping: single-feature polymorphism analysis, Illumina GoldenGate single nucleotide polymorphism (SNP) genotyping, and de novo SNP discovery via RNA-Seq analysis of next-generation sequence data. We used these methods to map the introgressed regions in an iron-inefficient soybean NIL and found that the three mapping approaches are complementary when utilized in combination. The comparative RNA-Seq approach offers several additional advantages, including the greatest mapping resolution, marker depth, and de novo marker utility for downstream fine-mapping analysis. We applied the comparative RNA-Seq method to map genetic introgressions in an additional pair of NILs exhibiting differential seed protein content. Furthermore, we attempted to optimize the comparative RNA-Seq approach by assessing the impact of sequence depth, SNP identification methodology, and post hoc analyses on SNP discovery rates. We conclude that the comparative RNA-Seq approach can be optimized with sufficient sampling and by utilizing a post hoc correction accounting for gene density variation that controls for false discoveries.
Figures



Similar articles
-
Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits.BMC Genomics. 2013 Sep 25;14:655. doi: 10.1186/1471-2164-14-655. BMC Genomics. 2013. PMID: 24063355 Free PMC article.
-
Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.PLoS One. 2014 Jun 17;9(6):e99427. doi: 10.1371/journal.pone.0099427. eCollection 2014. PLoS One. 2014. PMID: 24937645 Free PMC article.
-
Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.).Theor Appl Genet. 2019 Aug;132(8):2367-2379. doi: 10.1007/s00122-019-03359-4. Epub 2019 May 22. Theor Appl Genet. 2019. PMID: 31119311
-
Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean.Plant Physiol. 2012 Apr;158(4):1745-54. doi: 10.1104/pp.111.189860. Epub 2012 Feb 7. Plant Physiol. 2012. PMID: 22319075 Free PMC article.
-
Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes.Ann Bot. 2018 Feb 12;121(2):229-240. doi: 10.1093/aob/mcx149. Ann Bot. 2018. PMID: 29216335 Free PMC article.
Cited by
-
Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max).PLoS One. 2014 Sep 16;9(9):e107469. doi: 10.1371/journal.pone.0107469. eCollection 2014. PLoS One. 2014. PMID: 25225893 Free PMC article.
-
GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean.Front Plant Sci. 2024 Feb 27;15:1295952. doi: 10.3389/fpls.2024.1295952. eCollection 2024. Front Plant Sci. 2024. PMID: 38476685 Free PMC article.
-
The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82.Plant Physiol. 2011 Feb;155(2):645-55. doi: 10.1104/pp.110.166736. Epub 2010 Nov 29. Plant Physiol. 2011. PMID: 21115807 Free PMC article.
-
Legume genomics: understanding biology through DNA and RNA sequencing.Ann Bot. 2014 Jun;113(7):1107-20. doi: 10.1093/aob/mcu072. Epub 2014 Apr 25. Ann Bot. 2014. PMID: 24769535 Free PMC article. Review.
-
Examining Short-Term Responses to a Long-Term Problem: RNA-Seq Analyses of Iron Deficiency Chlorosis Tolerant Soybean.Int J Mol Sci. 2020 May 19;21(10):3591. doi: 10.3390/ijms21103591. Int J Mol Sci. 2020. PMID: 32438745 Free PMC article.
References
-
- Bernard RL, Nelson RL, Cremeens CR. (1991) USDA Soybean Genetic Collection: isoline collection. Soybean Genet Newsl 18: 27–57
-
- Ding C, Jin S. (2009) High-throughput methods for SNP genotyping. Methods Mol Biol 578: 245–254 - PubMed
-
- Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science 323: 133–138 - PubMed
-
- Fu Y, Springer NM, Gerhardt DJ, Ying K, Yeh CT, Wu W, Swanson-Wagner R, D’Ascenzo M, Millard T, Freeberg L, et al. (2010) Repeat subtraction-mediated sequence capture from a complex genome. Plant J 62: 898–909 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases