Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;398(5):1947-54.
doi: 10.1007/s00216-010-4026-8. Epub 2010 Jul 25.

Demonstration of a surface plasmon-coupled emission (SPCE)-based immunoassay in the absence of a spacer layer

Affiliations

Demonstration of a surface plasmon-coupled emission (SPCE)-based immunoassay in the absence of a spacer layer

Jong Seol Yuk et al. Anal Bioanal Chem. 2010 Nov.

Abstract

The technique of surface plasmon-coupled emission (SPCE) involves the coupling of light which is emitted from a fluorophore into the surface plasmon of an adjacent thin metal film, giving rise to highly directional emission. We have combined the advantages of SPCE with the high light collection efficiency of supercritical angle fluorescence by carrying out an immunoassay on a paraboloid array biochip in the absence of the conventional SPCE spacer layer normally used to minimize metal quenching of the fluorescence. In this work, we have successfully demonstrated an SPCE-based assay by utilizing the protein assay layer as the spacer layer. A novel 3 × 3 injection molded polymer biochip with paraboloid elements was used. The paraboloid elements served to enhance the light collection efficiency while the top surface was coated with a gold layer to use excitation of surface plasmons and detection of SPCE emission. Theoretical modeling of the gold-protein layer structure showed that the surface plasmon resonance angles were located in the detection range of the paraboloid biochip. The polarization dependence of SPCE emission was also demonstrated. Finally, a human IgG sandwich immunoassay was carried out which exhibited a limit of detection of ~10 ng/ml using 3σ. The results demonstrate the potential of the SPCE-based paraboloid array biochip as a novel platform for high-throughput analysis of biomolecular interactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources