Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;157(3):301-9.
doi: 10.1016/j.cbpb.2010.07.004. Epub 2010 Jul 23.

Thermogenesis in CD-1 mice after combined chronic hypoxia and cold acclimation

Affiliations

Thermogenesis in CD-1 mice after combined chronic hypoxia and cold acclimation

Jacqueline L Beaudry et al. Comp Biochem Physiol B Biochem Mol Biol. 2010 Nov.

Abstract

Many small mammals thermoregulate through shivering in muscle and/or non-shivering thermogenesis (NST) via brown adipose tissue (BAT) by the actions of mitochondrial uncoupling proteins (UCPs). An up-regulation of these mechanisms would be advantageous in a cold environment but not in conditions of low oxygen as it leads to needless increases in energy expenditure. We examined the chronic effect of 4 weeks of exposure to hypobaric hypoxia (H, 480 mm Hg), cold (C, 5 degrees C) and the combination of the two stressors (HC) compared to normoxic thermoneutral controls (N, 28 degrees C) in male CD-1 mice. We found that hypoxic/cold acclimated mice had significantly lower body temperatures (T(b)) after acclimation along with complete abolishment of diurnal T(b) fluctuations. Capacity for NST was assessed by changes in intrascapular BAT mass, mitochondrial content and UCP1 content per milligram mitochondria. Acclimation caused distinct remodeling of BAT that was reflected in differences in NE-induced increases in oxygen consumption (VO(2)) used to assess NST capacity. Reduction of T(b) in HC acclimated mice was not due to a decreased heat-generating capacity of BAT. VO(2) during an acute temperature challenge (32 to 4 degrees C) in normoxia was similar in all treatment groups compared to controls but thermal conductance was greater in C acclimated mice and T(b) higher in HC acclimated mice. We propose that an overriding inhibition by hypoxia on neural feedback pathways persists even after weeks of acclimation when combined with chronic cold.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources