Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;5(7):1252-63.
doi: 10.1101/gad.5.7.1252.

Unexpected point mutations activate cryptic 3' splice sites by perturbing a natural secondary structure within a yeast intron

Affiliations
Free article

Unexpected point mutations activate cryptic 3' splice sites by perturbing a natural secondary structure within a yeast intron

J O Deshler et al. Genes Dev. 1991 Jul.
Free article

Abstract

The 3' splice site of the budding yeast Kluyveromyces lactis actin gene (ACT) intron is distally spaced (122 nucleotides) from its branchpoint and is also preceded by a silent PyAG located 43 nucleotides upstream. We devised a genetic screen that resulted in the isolation of several randomly induced cis-acting mutations that activate the silent PyAG as a 3' splice site. These mutations fall within a region surrounding this PyAG, which can hypothetically fold into a higher-order structure. Site-directed mutational analyses demonstrate that a hairpin structure in this region is required for correct 3' splice-site selection. Analysis of the point mutations suggests that local breathing of the hairpin near the first PyAG can lead to its activation. These data demonstrate that 3' splice-site selection is not a consequence of a linear, directional scanning mechanism, but support the notion of a critical positioning requirement for 3' splice-site selection. We speculate on the possible origin of this intron-encoded structural motif, which has homology to a bacterial transposon and suggests one possible origin for alternative splicing mechanisms in higher eukaryotes.

PubMed Disclaimer

Publication types

LinkOut - more resources