ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells
- PMID: 20661224
- PMCID: PMC4256946
- DOI: 10.1038/onc.2010.289
ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells
Abstract
Understanding the mechanisms underlying ErbB3 overexpression in breast cancer will facilitate the rational design of therapies to disrupt ErbB2-ErbB3 oncogenic function. Although ErbB3 overexpression is frequently observed in breast cancer, the factors mediating its aberrant expression are poorly understood. In particular, the ErbB3 gene is not significantly amplified, raising the question as to how ErbB3 overexpression is achieved. In this study we showed that the ZNF217 transcription factor, amplified at 20q13 in ∼20% of breast tumors, regulates ErbB3 expression. Analysis of a panel of human breast cancer cell lines (n = 50) and primary human breast tumors (n = 15) showed a strong positive correlation between ZNF217 and ErbB3 expression. Ectopic expression of ZNF217 in human mammary epithelial cells induced ErbB3 expression, whereas ZNF217 silencing in breast cancer cells resulted in decreased ErbB3 expression. Although ZNF217 has previously been linked with transcriptional repression because of its close association with C-terminal-binding protein (CtBP)1/2 repressor complexes, our results show that ZNF217 also activates gene expression. We showed that ZNF217 recruitment to the ErbB3 promoter is CtBP1/2-independent and that ZNF217 and CtBP1/2 have opposite roles in regulating ErbB3 expression. In addition, we identify ErbB3 as one of the mechanisms by which ZNF217 augments PI-3K/Akt signaling.
Figures







References
-
- Agus D, Akita R, Fox W, Lewis G, Higgins B, Pisacane P, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2:127–137. - PubMed
-
- Bates NP, Hurst HC. An intron 1 enhancer element mediates oestrogen-induced suppression of ERBB2 expression. Oncogene. 1997;15:473–81. - PubMed
-
- Berns EM, Foekens JA, van Staveren IL, van Putten WL, de Koning HY, Portengen H, et al. Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene. 1995;159:11–18. - PubMed
-
- Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10:529–541. - PubMed
-
- Chinnadurai D. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol. 2007;39:1593–1607. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases