Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;38(3):294-9.
doi: 10.1109/10.133212.

Numerical tests of a method for simulating electrical potentials on the cortical surface

Affiliations

Numerical tests of a method for simulating electrical potentials on the cortical surface

R B Kearfott et al. IEEE Trans Biomed Eng. 1991 Mar.

Abstract

A mathematical imaging method for simulating cortical surface potentials was introduced at recent neurosciences meetings [1a], [1b], [2] and was applied to elucidate the neural origins of evoked responses in normal volunteers and certain patient populations. This method consists of the solution of an inward harmonic continuation problem and its effect is to simulate data that has not been attenuated and smeared by the skull. This cortical imaging technique (CIT) is validated by applying it to artificially derived data. Pairs of dipolar sources with different depths and separations are introduced into a spherical conducting medium simulating the head. Scalp potential maps are constructed by interpolating the simulated data between 28 "scalp" electrode positions. Noise is added to the data to approximate the variability in measured potentials that would be observed in practice. CIT is used in each case to construct potential maps on layers concentric to and within the layer representing the scalp. In several instances when the dipole pair is deep and closely spaced, the sources cannot be separated by the scalp topographical maps but are easily separated by the "cortical" topographical maps. CIT is also applied to scalp-recorded potentials evoked by bilateral median nerve stimulation and pattern-reversal visual stimulation.

PubMed Disclaimer

LinkOut - more resources