Membrane nanotubes drawn by optical tweezers transmit electrical signals between mammalian cells over long distances
- PMID: 20661503
- DOI: 10.1039/c004659k
Membrane nanotubes drawn by optical tweezers transmit electrical signals between mammalian cells over long distances
Abstract
Biological cells continuously change shape allowing essential functions such as cell motility, vesicle-mediated release/uptake of soluble and membrane components or nanotube-mediated cell-cell communications. Here we use single cell micromanipulation to induce functional changes of cell shape for nanobiotechnological applications. Optical tweezers are focused on the plasma membrane of living cells to pull membrane nanotubes of approximately 200 nanometre diameters and 100 micrometre lengths. Upon switching off the laser tweezer membrane nanotubes relax back to the cell surface. Single-exponential relaxation times deliver local mechanical properties of cells' plasma membrane. Nanotubes pulled beyond 100 micrometre tear off and form micrometre-sized vesicles carrying functional membrane receptors and cytoplasmic signaling components. Membrane nanotubes from one cell can be contacted to adjacent cells forming via connexins intercellular electrical connections within seconds in all directions. Our method opens broad applications for multiplexing single-cell analytics to submicrometer/subfemtoliter ranges and for creating artificial intercellular signaling networks, both not attainable by current methodologies.
Similar articles
-
Can membrane nanotubes facilitate communication between immune cells?Biochem Soc Trans. 2004 Nov;32(Pt 5):676-8. doi: 10.1042/BST0320676. Biochem Soc Trans. 2004. PMID: 15493985
-
Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks.Langmuir. 2006 Oct 24;22(22):9329-32. doi: 10.1021/la060828k. Langmuir. 2006. PMID: 17042549
-
Photophysics of individual single-walled carbon nanotubes.Acc Chem Res. 2008 Feb;41(2):235-43. doi: 10.1021/ar700136v. Acc Chem Res. 2008. PMID: 18281946
-
Wiring through tunneling nanotubes--from electrical signals to organelle transfer.J Cell Sci. 2012 Mar 1;125(Pt 5):1089-98. doi: 10.1242/jcs.083279. Epub 2012 Mar 7. J Cell Sci. 2012. PMID: 22399801 Review.
-
Intercellular transfer mediated by tunneling nanotubes.Curr Opin Cell Biol. 2008 Aug;20(4):470-5. doi: 10.1016/j.ceb.2008.03.005. Epub 2008 May 2. Curr Opin Cell Biol. 2008. PMID: 18456488 Review.
Cited by
-
Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip.Sci Rep. 2017 Mar 20;7:44835. doi: 10.1038/srep44835. Sci Rep. 2017. PMID: 28317863 Free PMC article.
-
Probing cell-cell communication with microfluidic devices.Lab Chip. 2013 Aug 21;13(16):3152-62. doi: 10.1039/c3lc90067c. Epub 2013 Jul 10. Lab Chip. 2013. PMID: 23843092 Free PMC article. Review.
-
Downscaling the analysis of complex transmembrane signaling cascades to closed attoliter volumes.PLoS One. 2013 Aug 5;8(8):e70929. doi: 10.1371/journal.pone.0070929. Print 2013. PLoS One. 2013. PMID: 23940670 Free PMC article.
-
Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis.Theor Biol Med Model. 2016 Jun 6;13(1):16. doi: 10.1186/s12976-016-0042-5. Theor Biol Med Model. 2016. PMID: 27267202 Free PMC article. Review.
-
Generation of phospholipid vesicle-nanotube networks and transport of molecules therein.Nat Protoc. 2011 Jun;6(6):791-805. doi: 10.1038/nprot.2011.321. Epub 2011 May 19. Nat Protoc. 2011. PMID: 21637199
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources