Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Sep 10;11(13):2674-97.
doi: 10.1002/cphc.201000216.

Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications

Affiliations
Review

Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications

Roland Ludwig et al. Chemphyschem. .

Abstract

Cellobiose dehydrogenase catalyses the oxidation of aldoses--a simple reaction, a boring enzyme? No, neither for the envisaged bioelectrochemical applications nor mechanistically. The catalytic cycle of this flavocytochrome is complex and modulated by its flexible cytochrome domain, which acts as a built-in redox mediator. This intramolecular electron transfer is modulated by the pH, an adaptation to the environmental conditions encountered or created by the enzyme-producing fungi. The cytochrome domain forms the base from which electrons can jump to large terminal electron acceptors, such as redox proteins, and also enables by that path direct electron transfer from the catalytically active flavodehydrogenase domain to electrode surfaces. The application of electrochemical techniques to the elucidation of the molecular and catalytic properties of cellobiose dehydrogenase is discussed and compared to biochemical methods. The results lead to valuable insights into the function of this cellulose-bound enzyme, but also form the basis of exciting applications in biosensors, biofuel cells and bioelectrocatalysis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources