Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Aug;30(3):245-57.
doi: 10.1055/s-0030-1255354. Epub 2010 Jul 21.

Macrophages: master regulators of inflammation and fibrosis

Affiliations
Review

Macrophages: master regulators of inflammation and fibrosis

Thomas A Wynn et al. Semin Liver Dis. 2010 Aug.

Abstract

Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-beta1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the master "regulators" of fibrosis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218. - PMC - PubMed
    1. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007;117:539–548. - PMC - PubMed
    1. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669. - PMC - PubMed
    1. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–172. - PMC - PubMed
    1. Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem J. 2008;411:1–18. - PubMed

MeSH terms