Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;42(11):781-6.
doi: 10.1055/s-0030-1261955. Epub 2010 Jul 27.

The inhibitory effect of a novel cytotoxic somatostatin analogue AN-162 on experimental glioblastoma

Affiliations

The inhibitory effect of a novel cytotoxic somatostatin analogue AN-162 on experimental glioblastoma

E Pozsgai et al. Horm Metab Res. 2010 Oct.

Abstract

Glioblastoma multiforme is the most common and most aggressive type of high grade tumor with a poor prognosis upon discovery. Based on earlier promising results earned with AN-162, a doxorubicin molecule linked to somatostatin (SST) analogue RC-160, it was our aim to determine the effect of AN-162 on DBTRG-05 glioblastoma cell line, and to test its efficacy in experimental brain tumors. We detected the expression of mRNA for somatostatin receptor (SSTR) subtypes 2 and 3 in DBTRG-05 cells with RT-PCR. Using ligand competition assay, specific high affinity receptors for somatostatin were found. The MTT assay showed that both AN-162 and doxorubicin (DOX) significantly inhibited cell proliferation and that there was no significant difference between the effects in vitro. Nude mice were xenografted with DBTRG-05 glioblastoma tumors. AN-162 showed a significant inhibition of tumor growth compared with the control group and the groups treated with equimolar doses of doxorubicin, somatostatin analogue RC-160, or the unconjugated mixture of doxorubicin plus RC-160. The tumor doubling time in the group of animals treated with AN-162 was extended and was significantly different from doubling times in the control group and in the other treatment groups. Our study clearly demonstrates a potent inhibitory effect of AN-162 in experimental glioblastoma, thus suggesting the possibility of its utilization in patients suffering from malignant brain cancer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources