Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 29:10:53.
doi: 10.1186/1471-2431-10-53.

Efficacy of bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR for detecting neonatal sepsis: a case control study

Affiliations

Efficacy of bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR for detecting neonatal sepsis: a case control study

Makoto Fujimori et al. BMC Pediatr. .

Abstract

Background: Neonatal sepsis is difficult to diagnose and pathogens cannot be detected from blood cultures in many cases. Development of a rapid and accurate method for detecting pathogens is thus essential. The main purpose of this study was to identify etiological agents in clinically diagnosed neonatal sepsis using bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR (BrRNA-RT-qPCR) and to conduct comparisons with the results of conventional blood culture. Since BrRNA-RT-qPCR targets bacterial ribosomal RNA, detection rates using this approach may exceed those using conventional PCR.

Methods: Subjects comprised 36 patients with 39 episodes of suspected neonatal sepsis who underwent BrRNA-RT-qPCR and conventional blood culture to diagnose sepsis. Blood samples were collected aseptically for BrRNA-RT-qPCR and blood culture at the time of initial sepsis evaluation by arterial puncture. BrRNA-RT-qPCR and blood culture were undertaken using identical blood samples, and BrRNA-RT-qPCR was performed using 12 primer sets.

Results: Positive rate was significantly higher for BrRNA-RT-qPCR (15/39, 38.5%) than for blood culture (6/39, 15.4%; p = 0.0039). BrRNA-RT-qPCR was able to identify all pathogens detected by blood culture. Furthermore, this method detected pathogens from neonates with clinical sepsis in whom pathogens was not detected by culture methods.

Conclusions: This RT-PCR technique is useful for sensitive detection of pathogens causing neonatal sepsis, even in cases with negative results by blood culture.

PubMed Disclaimer

References

    1. Jordan JA, Durso MB, Butchko AR, Jones JG, Brozanski BS. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing. J Mol Diagn. 2006;8(3):357–363. doi: 10.2353/jmoldx.2006.050138. - DOI - PMC - PubMed
    1. Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sanchez PJ, Ambalavanan N, Benjamin DK. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123(1):58–66. doi: 10.1542/peds.2007-3423. - DOI - PMC - PubMed
    1. Del Vecchio A, Laforgia N, Capasso M, Iolascon A, Latini G. The role of molecular genetics in the pathogenesis and diagnosis of neonatal sepsis. Clin Perinatol. 2004;31(1):53–67. doi: 10.1016/j.clp.2004.03.012. - DOI - PubMed
    1. Jordan JA, Durso MB. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J Mol Diagn. 2005;7(5):575–581. - PMC - PubMed
    1. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004;17(3):638–680. doi: 10.1128/CMR.17.3.638-680.2004. table of contents. - DOI - PMC - PubMed

MeSH terms