Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 2;101(4):549-53.
doi: 10.1016/j.physbeh.2010.07.007. Epub 2010 Jul 25.

Basolateral amygdala stimulation does not recruit LTP at depotentiated synapses

Affiliations

Basolateral amygdala stimulation does not recruit LTP at depotentiated synapses

W Almaguer-Melian et al. Physiol Behav. .

Abstract

Hippocampal long-term potentiation (LTP) is a long-lasting increase in synaptic efficacy considered to be the cellular basis of memory. LTP consists of an early, protein synthesis-independent phase (E-LTP) and a late phase that depends on protein synthesis (L-LTP). Application of a weak tetanus can induce E-LTP in the dentate gyrus (DG) which can be reinforced into L-LTP by direct stimulation of the basolateral amygdala (BLA) within 30 min before or after LTP induction (structural LTP-reinforcement). LTP can be depotentiated by low-frequency stimulation (LFS) to the same synaptic input if applied shortly after tetanization (<10 min). Here, we addressed the question of whether stimulation of the BLA is able to recover LTP at depotentiated synaptic inputs. We hypothesized that E-LTP can activate synaptic tags, which were then reset by depotentiation. Stimulation of the BLA thereafter could beneficially act on tag-reactivation as well as on the activation of the synthesis of plasticity-related proteins (PRPs), normally captured by the tags and thus transforming E-LTP into L-LTP. Our results show, that BLA-stimulation was not able to reactivate the resetting of tags by depotentiation in the DG of freely moving rats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources