Structure-based engineering of benzalacetone synthase
- PMID: 20667730
- DOI: 10.1016/j.bmcl.2010.07.022
Structure-based engineering of benzalacetone synthase
Abstract
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the 'coumaroyl binding pocket' in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.
Copyright 2010 Elsevier Ltd. All rights reserved.
Similar articles
-
Structure function analysis of benzalacetone synthase from Rheum palmatum.Bioorg Med Chem Lett. 2007 Jun 1;17(11):3161-6. doi: 10.1016/j.bmcl.2007.03.029. Epub 2007 Mar 15. Bioorg Med Chem Lett. 2007. PMID: 17383877
-
Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase.FEBS J. 2006 Jan;273(1):208-18. doi: 10.1111/j.1742-4658.2005.05059.x. FEBS J. 2006. PMID: 16367761
-
Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases.J Biol Chem. 2003 Jul 4;278(27):25218-26. doi: 10.1074/jbc.M303276200. Epub 2003 Apr 30. J Biol Chem. 2003. PMID: 12724310
-
Engineering of plant polyketide biosynthesis.Chem Pharm Bull (Tokyo). 2008 Nov;56(11):1505-14. doi: 10.1248/cpb.56.1505. Chem Pharm Bull (Tokyo). 2008. PMID: 18981598 Review.
-
Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.Phytochemistry. 2009 Oct-Nov;70(15-16):1719-27. doi: 10.1016/j.phytochem.2009.06.017. Epub 2009 Aug 21. Phytochemistry. 2009. PMID: 19699497 Review.
Cited by
-
Exploiting the Biosynthetic Potential of Type III Polyketide Synthases.Molecules. 2016 Jun 22;21(6):806. doi: 10.3390/molecules21060806. Molecules. 2016. PMID: 27338328 Free PMC article. Review.
-
Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity.J Biol Chem. 2013 Nov 22;288(47):34146-34157. doi: 10.1074/jbc.M113.487272. Epub 2013 Oct 7. J Biol Chem. 2013. PMID: 24100027 Free PMC article.
-
Benzalacetone synthase.Front Plant Sci. 2012 Mar 21;3:57. doi: 10.3389/fpls.2012.00057. eCollection 2012. Front Plant Sci. 2012. PMID: 22645592 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous