Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;132(8):081012.
doi: 10.1115/1.4000086.

High strain rate testing of bovine trabecular bone

Affiliations

High strain rate testing of bovine trabecular bone

A Pilcher et al. J Biomech Eng. 2010 Aug.

Abstract

In spinal vertebral burst fractures, the dynamic properties of the trabecular centrum, which is the central region of porous bone inside the vertebra, can play an important role in determining the failure mode. If the failure occurs in the posterior portion of the vertebral body, spinal canal occlusion can occur and ejected trabecular bone can impact the spinal cord resulting in serious injury. About 15% of all spinal cord injuries are caused by such burst fractures. Unfortunately, due to the uniqueness of burst fracture injuries, postinjury investigation cannot always accurately assess the degree of damage caused by these fractures. This research makes an effort to begin understanding the governing effects in this important bone fracture event. Measurements of the dynamic deformation response of bovine trabecular bone with the marrow intact and marrow removed using a modified split-Hopkinson pressure bar apparatus are reported and compared with quasistatic deformation response results. Because trabecular bone is more compliant and lower in strength than cortical bone, typical Hopkinson pressure bar experimental techniques used for high strain rate testing of harder materials cannot be applied. Instead, a quartz-crystal-embedded, split-Hopkinson pressure bar developed for testing compliant, low strength materials is used. Care is taken into account for the orthotropic properties in the bone by testing only along the principle material axes, determined through microcomputed tomography. In addition, shaping of the stress wave pulse is used to ensure a constant strain rate and homogeneous specimen deformation. Results indicate that the strength of trabecular bone increases by a factor of approximately 2-3 when the strain rate increases from 10(-3) s(-1) to 500 s(-1) and that the bone fractures beyond a critical strain.

PubMed Disclaimer

LinkOut - more resources