Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb;55(2):223-32.
doi: 10.1254/jjp.55.223.

Pharmacological characteristics of choline transport system in mouse cerebral cortical neurons in primary culture

Affiliations
Free article

Pharmacological characteristics of choline transport system in mouse cerebral cortical neurons in primary culture

M Kishi et al. Jpn J Pharmacol. 1991 Feb.
Free article

Abstract

The characteristics of [3H]choline transport with high affinity were investigated using primary cultured neurons obtained from the mouse cerebral cortex. [3H]Choline uptake was saturable as a function of extracellular [3H]choline concentration. Analysis by Lineweaver-Burk plot revealed that [3H]choline was transported into neurons by a high affinity transport system with a Km value of 19.8 +/- 0.8 microM and Vmax value of 0.334 +/- 0.022 nmol/mg protein/min. This high affinity transport of [3H]choline was significantly inhibited by the withdrawal of sodium from the incubation medium, incubation at low temperature (4 degrees C) and addition of metabolic inhibitors such as monoiodoacetate. These results indicate that the high affinity [3H]choline uptake in primary cultured neurons is sodium- and energy-dependent. Hemicholinium-3 also showed a competitive inhibition on the [3H]choline transport. Depolarization by high K+ induced an enhancement of the [3H]choline uptake in the presence of Ca2+. The crude synaptosomal fraction obtained from primary cultured neurons possessed approximately forty-fold higher synthesizing activity of [3H]acetylcholine from [3H]choline than that found in the homogenate preparation of cultured neurons. The present results strongly suggest that the primary cultured neurons used in this study possess a sodium- and energy-dependent high-affinity choline uptake system as well as a synthesizing system for acetylcholine. Possible usefulness of these neurons for investigating neuronal uptake of choline and its functional role in the biosynthesis of acetylcholine are also suggested.

PubMed Disclaimer

Similar articles

Cited by