Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;47(5):905-15.
doi: 10.1016/j.bone.2010.07.020. Epub 2010 Jul 29.

Delayed bone age due to a dual effect of FGFR3 mutation in Achondroplasia

Affiliations

Delayed bone age due to a dual effect of FGFR3 mutation in Achondroplasia

Stéphanie Pannier et al. Bone. 2010 Nov.

Abstract

Achondroplasia (ACH), the most common form of human dwarfism is caused by a mutation in the Fibroblast Growth Factor Receptor 3 (FGFR3) gene, resulting in constitutive activation of the receptor. Typical radiological features include shortening of the tubular bones and macrocephaly, due to disruption of endochondral ossification. Consequently, FGFR3 has been described as a negative regulator of bone growth. Studying a large cohort of ACH patients, a delay in bone age was observed shortly after birth (for boys p=2.6×10(-9) and for girls p=1.2×10(-8)). This delay was no longer apparent during adolescence. In order to gain further insight into bone formation, bone development was studied in a murine model of chondrodysplasia (Fgfr3(Y367C/+)) from birth to 6weeks of age. Delayed bone age was also observed in Fgfr3(Y367C/+) mice at 1week of age followed by an accelerated secondary ossification center formation. A low level of chondrocyte proliferation was observed in the normal growth plate at birth, which increased with bone growth. In the pathological condition, a significantly high level of proliferative cells was present at birth, but exhibited a transient decrease only to rise again subsequently. Histological and in situ analyses suggested the altered endochondral ossification process may result from delayed chondrocyte differentiation, disruption of vascularization and osteoblast invasion of the femur. All these data provide evidence that FGFR3 regulates normal chondrocyte proliferation and differentiation during bone growth and suggest that constitutive activation of the receptor disrupts both processes. Therefore, the consequences of FGFR3 activation on the physiological process of bone development appear to be dependent on spatial and temporal occurrence. In conclusion, these observations support the notion that FGFR3 has a dual effect, as both a negative and a positive regulator of the endochondral ossification process during post-natal bone development.

PubMed Disclaimer

Comment in

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources