Consistency of predictive signature genes and classifiers generated using different microarray platforms
- PMID: 20676064
- PMCID: PMC2920073
- DOI: 10.1038/tpj.2010.34
Consistency of predictive signature genes and classifiers generated using different microarray platforms
Abstract
Microarray-based classifiers and associated signature genes generated from various platforms are abundantly reported in the literature; however, the utility of the classifiers and signature genes in cross-platform prediction applications remains largely uncertain. As part of the MicroArray Quality Control Phase II (MAQC-II) project, we show in this study 80-90% cross-platform prediction consistency using a large toxicogenomics data set by illustrating that: (1) the signature genes of a classifier generated from one platform can be directly applied to another platform to develop a predictive classifier; (2) a classifier developed using data generated from one platform can accurately predict samples that were profiled using a different platform. The results suggest the potential utility of using published signature genes in cross-platform applications and the possible adoption of the published classifiers for a variety of applications. The study reveals an opportunity for possible translation of biomarkers identified using microarrays to clinically validated non-array gene expression assays.
Figures






Comment in
-
Consistency of predictive signature genes and classifiers.Pharmacogenomics. 2011 Apr;12(4):461-3. doi: 10.2217/pgs.11.26. Pharmacogenomics. 2011. PMID: 21521018 No abstract available.
Similar articles
-
Cross-platform comparison of microarray-based multiple-class prediction.PLoS One. 2011 Jan 11;6(1):e16067. doi: 10.1371/journal.pone.0016067. PLoS One. 2011. PMID: 21264309 Free PMC article.
-
Rat toxicogenomic study reveals analytical consistency across microarray platforms.Nat Biotechnol. 2006 Sep;24(9):1162-9. doi: 10.1038/nbt1238. Nat Biotechnol. 2006. PMID: 17061323
-
Evaluation of inter-laboratory and cross-platform concordance of DNA microarrays through discriminating genes and classifier transferability.J Bioinform Comput Biol. 2009 Feb;7(1):157-73. doi: 10.1142/s0219720009004011. J Bioinform Comput Biol. 2009. PMID: 19226665
-
Toxicogenomics in the assessment of immunotoxicity.Methods. 2007 Jan;41(1):132-41. doi: 10.1016/j.ymeth.2006.07.010. Methods. 2007. PMID: 17161310 Review.
-
Application of DNA microarray to toxicological research.J Environ Pathol Toxicol Oncol. 2004;23(1):13-31. doi: 10.1615/jenvpathtoxoncol.v23.i1.20. J Environ Pathol Toxicol Oncol. 2004. PMID: 14994992 Review.
Cited by
-
Prior knowledge transfer across transcriptional data sets and technologies using compositional statistics yields new mislabelled ovarian cell line.Nucleic Acids Res. 2016 Sep 30;44(17):e137. doi: 10.1093/nar/gkw578. Epub 2016 Jun 28. Nucleic Acids Res. 2016. PMID: 27353327 Free PMC article.
-
The FDA's Experience with Emerging Genomics Technologies-Past, Present, and Future.AAPS J. 2016 Jul;18(4):814-8. doi: 10.1208/s12248-016-9917-y. Epub 2016 Apr 26. AAPS J. 2016. PMID: 27116022 Free PMC article. Review.
-
Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.Brief Bioinform. 2012 Jul;13(4):430-45. doi: 10.1093/bib/bbs026. Brief Bioinform. 2012. PMID: 22833495 Free PMC article.
-
Prediction of clinically relevant safety signals of nephrotoxicity through plasma metabolite profiling.Biomed Res Int. 2013;2013:202497. doi: 10.1155/2013/202497. Epub 2013 May 21. Biomed Res Int. 2013. PMID: 23762827 Free PMC article.
-
A Comparison of the TempO-Seq S1500+ Platform to RNA-Seq and Microarray Using Rat Liver Mode of Action Samples.Front Genet. 2018 Oct 30;9:485. doi: 10.3389/fgene.2018.00485. eCollection 2018. Front Genet. 2018. PMID: 30420870 Free PMC article.
References
-
- Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–470. - PubMed
-
- van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. - PubMed
-
- Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU, et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods. 2005;2:351–356. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials