Alarm pheromone processing in the ant brain: an evolutionary perspective
- PMID: 20676235
- PMCID: PMC2912167
- DOI: 10.3389/fnbeh.2010.00028
Alarm pheromone processing in the ant brain: an evolutionary perspective
Abstract
Social insects exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. We review recent advances in the understanding of the processing of alarm pheromone information in the ant brain. We found that information about formic acid and n-undecane, alarm pheromone components, is processed in a set of specific glomeruli in the antennal lobe of the ant Camponotus obscuripes. Alarm pheromone information is then transmitted, via projection neurons (PNs), to the lateral horn and the calyces of the mushroom body of the protocerebrum. In the lateral horn, we found a specific area where terminal boutons of alarm pheromone-sensitive PNs are more densely distributed than in the rest of the lateral horn. Some neurons in the protocerebrum responded specifically to formic acid or n-undecane and they may participate in the control of behavioral responses to each pheromone component. Other neurons, especially those originating from the mushroom body lobe, responded also to non-pheromonal odors and may play roles in integration of pheromonal and non-pheromonal signals. We found that a class of neurons receive inputs in the lateral horn and the mushroom body lobe and terminate in a variety of premotor areas. These neurons may participate in the control of aggressive behavior, which is sensitized by alarm pheromones and is triggered by non-pheromonal sensory stimuli associated with a potential enemy. We propose that the alarm pheromone processing system has evolved by differentiation of a part of general odor processing system.
Keywords: aggression; antennal lobe; communication; evolution; mushroom body; pheromone; social insect.
Figures






Similar articles
-
Neural pathways for the processing of alarm pheromone in the ant brain.J Comp Neurol. 2007 Dec 1;505(4):424-42. doi: 10.1002/cne.21500. J Comp Neurol. 2007. PMID: 17912739
-
Pheromone communication and the mushroom body of the ant, Camponotus obscuripes (Hymenoptera: Formicidae).Naturwissenschaften. 2005 Nov;92(11):532-6. doi: 10.1007/s00114-005-0039-0. Epub 2005 Sep 24. Naturwissenschaften. 2005. PMID: 16184392
-
Spatial representation of alarm pheromone information in a secondary olfactory centre in the ant brain.Proc Biol Sci. 2010 Aug 22;277(1693):2465-74. doi: 10.1098/rspb.2010.0366. Epub 2010 Apr 7. Proc Biol Sci. 2010. PMID: 20375054 Free PMC article.
-
Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori.Front Physiol. 2014 Mar 31;5:125. doi: 10.3389/fphys.2014.00125. eCollection 2014. Front Physiol. 2014. PMID: 24744736 Free PMC article. Review.
-
The role of the Drosophila lateral horn in olfactory information processing and behavioral response.J Insect Physiol. 2017 Apr;98:29-37. doi: 10.1016/j.jinsphys.2016.11.007. Epub 2016 Nov 19. J Insect Physiol. 2017. PMID: 27871975 Review.
Cited by
-
Active Inferants: An Active Inference Framework for Ant Colony Behavior.Front Behav Neurosci. 2021 Jun 24;15:647732. doi: 10.3389/fnbeh.2021.647732. eCollection 2021. Front Behav Neurosci. 2021. PMID: 34248515 Free PMC article.
-
Olfactory Strategies in the Defensive Behaviour of Insects.Insects. 2022 May 18;13(5):470. doi: 10.3390/insects13050470. Insects. 2022. PMID: 35621804 Free PMC article. Review.
-
Context-dependent effects of formic acid on olfactory learning and generalisation in ants.Sci Rep. 2025 Jul 10;15(1):24891. doi: 10.1038/s41598-025-10996-x. Sci Rep. 2025. PMID: 40640427 Free PMC article.
-
Decoding alarm signal propagation of seed-harvester ants using automated movement tracking and supervised machine learning.Proc Biol Sci. 2022 Jan 26;289(1967):20212176. doi: 10.1098/rspb.2021.2176. Epub 2022 Jan 26. Proc Biol Sci. 2022. PMID: 35078355 Free PMC article.
-
Switching escape strategies in the parasitic ant cricket Myrmecophilus tetramorii.Commun Biol. 2024 Dec 30;7(1):1714. doi: 10.1038/s42003-024-07368-y. Commun Biol. 2024. PMID: 39739101 Free PMC article.
References
-
- Alaux C., Sinha S., Hasadsri L., Hunt G. J., Guzmán-Novoa E., DeGrandi-Hoffman G., Uribe-Rubio J. L., Southey B. R., Rodriguez-Zas S., Robinson G. E. (2009). Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc. Natl. Acad. Sci. U.S.A. 106, 15400–1540510.1073/pnas.0907043106 - DOI - PMC - PubMed
-
- Billen J. (1994). “Morphology of exocrine glands in social insects: an up-date 100 years after Ch. Janet,” in Les Insectes Sociaux, eds Lenoir A., Arnold A. G., Lepage M. (Paris: Publications Universite Paris Nord; ), p. 214
-
- Blum M. S. (1985). “Alarm pheromone.” in Comparative Insect Physiology, Biochemistry and Pharmacology, Vol 9, eds Kerkut G. A., Gilbert L. I. (Oxford: Pergamon; ) pp. 193–224
-
- Boeckh J., Ernst K. D. (1987). Contribution of single unit analysis in insects to an understanding of olfactory function. J. Comp. Physiol. A. 161, 549–56510.1007/BF00603661 - DOI
LinkOut - more resources
Full Text Sources