Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases
- PMID: 20677753
- DOI: 10.1021/bi100894r
Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases
Abstract
Subclass B1 beta-lactamases are Zn(II)-dependent hydrolases that confer bacterial resistance to most clinically useful beta-lactam antibiotics. The enzyme BcII from Bacillus cereus is a prototypical enzyme that belongs to this group, the first Zn(II)-dependent beta-lactamase to be discovered. Crucial aspects of the BcII catalytic mechanism and metal binding mode have been assessed mostly on the Co(II)-substituted surrogate. Here we report a high-resolution structure of Co(II)-BcII, revealing a metal coordination geometry identical to that of the native zinc enzyme. In addition, a high-resolution structure of the apoenzyme, together with structures with different degrees of metal occupancy and oxidation levels of a conserved Cys ligand, discloses a considerable mobility of two loops containing four metal ligands (namely, regions His116-Arg121 and Gly219-Cys221). This flexibility is expected to assist in the structural rearrangement of the metal sites during catalytic turnover, which, along with the coordination geometry adaptability of Zn(II) ions, grants the interaction with a variety of substrates, a characteristic feature of B1 metallo-beta-lactamases.
Similar articles
-
Metal content and localization during turnover in B. cereus metallo-beta-lactamase.J Am Chem Soc. 2008 Nov 26;130(47):15842-51. doi: 10.1021/ja801168r. J Am Chem Soc. 2008. PMID: 18980306
-
The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.J Mol Biol. 2007 Nov 9;373(5):1141-56. doi: 10.1016/j.jmb.2007.08.031. Epub 2007 Aug 21. J Mol Biol. 2007. PMID: 17915249
-
The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.Biochemistry. 2006 Sep 5;45(35):10654-66. doi: 10.1021/bi060934l. Biochemistry. 2006. PMID: 16939217
-
Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.Biochem Pharmacol. 2007 Dec 15;74(12):1686-701. doi: 10.1016/j.bcp.2007.05.021. Epub 2007 Jun 2. Biochem Pharmacol. 2007. PMID: 17597585 Review.
-
Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria.Acc Chem Res. 2006 Oct;39(10):721-8. doi: 10.1021/ar0400241. Acc Chem Res. 2006. PMID: 17042472 Review.
Cited by
-
Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase.Nat Chem Biol. 2016 Jul;12(7):516-22. doi: 10.1038/nchembio.2083. Epub 2016 May 16. Nat Chem Biol. 2016. PMID: 27182662 Free PMC article.
-
Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes.Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3745-54. doi: 10.1073/pnas.1601368113. Epub 2016 Jun 14. Proc Natl Acad Sci U S A. 2016. PMID: 27303030 Free PMC article.
-
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15. Chem Rev. 2021. PMID: 34129337 Free PMC article. Review.
-
Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism.Biomolecules. 2020 Jun 3;10(6):854. doi: 10.3390/biom10060854. Biomolecules. 2020. PMID: 32503337 Free PMC article. Review.
-
Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface.Curr Opin Chem Biol. 2022 Feb;66:102103. doi: 10.1016/j.cbpa.2021.102103. Epub 2021 Dec 2. Curr Opin Chem Biol. 2022. PMID: 34864439 Free PMC article. Review.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources